1. Courage Soda and Dexter Soda compete for a market of 210 customers who drink soda each day.

Today, Courage has 80 customers and Dexter has 130 customers. Each day:

70% of Courage Soda's customers keep drinking Courage Soda, while 30% switch to Dexter Soda.

40% of Dexter Soda's customers keep drinking Dexter Soda, while 60% switch to Courage Soda.

a) Write a stochastic matrix *A* and a vector *x* so that *Ax* will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow. You do not need to compute *Ax*.

$$
A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix} \text{ and } x = \begin{pmatrix} 80 \\ 130 \end{pmatrix}.
$$

b) Find the steady-state vector for *A*.

$$
(A-I \mid 0) = \begin{pmatrix} -0.3 & 0.6 \ 0.3 & -0.6 \ 0 \end{pmatrix} \xrightarrow{R_2=R_2+R_1} \begin{pmatrix} 1 & -2 \ 0 & 0 \ 0 & 0 \end{pmatrix}
$$

so $x_1 = 2x_2$ and x_2 is free. A 1-eigenvector is $\begin{pmatrix} 2 \ 1 \end{pmatrix}$, so the steady state vector
is $w = \frac{1}{2+1} \begin{pmatrix} 2 \ 1 \end{pmatrix} = \begin{pmatrix} 2/3 \ 1/3 \end{pmatrix}$.

c) Use your answer from (b) to determine the following: in the long run, roughly how many daily customers will Courage Soda have?

As *n* gets large, $A^n\binom{80}{130}$ approaches 210 $\binom{2/3}{1/3}$ 1*/*3 λ = $\binom{140}{70}$. Courage will have roughly 140 customers.

2. Let *W* be the set of all vectors in \mathbb{R}^3 of the form $(x, x - y, y)$ where *x* and *y* are real numbers.

a) Find a basis for W^{\perp} .

b) Let $x =$ $\sqrt{2}$ -2 1 ! . Find the projection x_W of x onto the subspace W and the orthogonal projection x_{W^\perp} of x onto the subspace $W^\perp.$

Solution.

a) A vector in *W* has the form

$$
\begin{pmatrix} x \\ x - y \\ y \end{pmatrix} = \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -y \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \text{ so } W \text{ has basis } \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}.
$$

To get W^{\perp} we find $Nul \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ which gives us
 $x_1 = -x_3, \quad x_2 = x_3, \quad x_3 = x_3 \text{ (free)},$
so W^{\perp} has basis $\left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}.$

b) Let *A* be the matrix whose columns are the basis vectors for *W*: *A* = $(1 \ 0)$ $1 -1$ $\left(\begin{array}{cc} 1 & 0 \ 1 & -1 \ 0 & 1 \end{array}\right)$. We calculate $A^{T}A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$ 1 −1 $\left(\begin{matrix} 1 & 0 \ 1 & -1 \ 0 & 1 \end{matrix}\right)$ = $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ and $A^T x =$ $\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ −1 2 ! = $\int 0$ 3 λ , and solve $A^T A v = A^T x$. $(A^T A \mid A^T x) =$ $\begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$ -1 2 3 $\rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $0 \quad 1 \mid 2$ $\Rightarrow v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 λ

Then final answer for x_W is $x_W = Av =$ $(1 \ 0)$ $1 -1$ $\begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 λ = $\begin{pmatrix} 1 \end{pmatrix}$ −1 2 ! , and $x_{W^{\perp}} = x - x_W = 0$ $\begin{pmatrix} 2 \end{pmatrix}$ -2 1 ! − $\begin{pmatrix} 1 \end{pmatrix}$ −1 2 ! = $\begin{pmatrix} 1 \end{pmatrix}$ −1 −1 ! .