Math 1553 Worksheet §6.1 - §6.5

1. True/False. Justify your answer. (1) If *u* is in subspace *W*, and *u* is also in W^{\perp} , then u = 0.

(2) If y is in a subspace W, the orthogonal projection of y onto W^{\perp} is 0.

(3) If x is orthogonal to v and w, then x is also orthogonal to v - w.

2. a) Find the standard matrix *B* for proj_W , where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.

b) What are the eigenvalues of *B*? Is *B* is diagonalizable?

c) Let $x = \begin{pmatrix} 3 \\ 0 \\ 9 \end{pmatrix}$. Find the orthogonal decomposition of x with respect to W. In other words, find x_W in W and $x_{W^{\perp}}$ in W^{\perp} so that $x = x_W + x_{W^{\perp}}$. **3.** Use least-squares to find the best fit line y = Ax + B through the points (0,0), (1,8), (3,8), and (4,20).