Math 1553 Worksheet §6.1-§6.5

1. True/False. Justify your answer.
(1) If u is in subspace W, and u is also in W^{\perp}, then $u=0$.
(2) If y is in a subspace W, the orthogonal projection of y onto W^{\perp} is 0 .
(3) If x is orthogonal to v and w, then x is also orthogonal to $v-w$.
2. a) Find the standard matrix B for proj_{W}, where $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
b) What are the eigenvalues of B ? Is B is diagonalizable?
c) Let $x=\left(\begin{array}{l}3 \\ 0 \\ 9\end{array}\right)$. Find the orthogonal decomposition of x with respect to W. In other words, find x_{W} in W and $x_{W^{\perp}}$ in W^{\perp} so that $x=x_{W}+x_{W^{\perp}}$.
3. Use least-squares to find the best fit line $y=A x+B$ through the points $(0,0),(1,8)$, $(3,8)$, and $(4,20)$.
