Supplemental problems: Chapter 6

- **1.** True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
 - a) Suppose $W = \operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
 - **b)** Suppose W is a subspace of \mathbb{R}^n and x is a vector in \mathbb{R}^n . If x is not in W, then $x x_W$ is not zero.
 - c) Suppose W is a subspace of \mathbb{R}^n and x is in both W and W^{\perp} . Then x = 0.
 - **d)** Suppose \widehat{x} is a least squares solution to Ax = b. Then \widehat{x} is the closest vector to b in the column space of A.

Solution.

- a) True. Since $v \in W^{\perp}$, its projection onto W is zero.
- **b)** True. If x is not in W then $x \neq x_W$, so $x x_W$ is not zero.
- c) True. Since x is in W and W^{\perp} it is orthogonal to itself, so $||x||^2 = x \cdot x = 0$. The length of x is zero, which means every entry of x is zero, hence x = 0.
- **d)** False: $A\hat{x}$ is the closest vector to b in Col A.
- **2.** Let $W = \text{Span}\{v_1, v_2\}$, where $v_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
 - a) Find the closest point w in W to $x = \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.

Let
$$A = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix}$$
. We solve $A^T A v = A^T x$.

$$A^{T}A = \begin{pmatrix} 6 & 6 \\ 6 & 14 \end{pmatrix} \qquad A^{T} \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix} = \begin{pmatrix} 24 \\ 16 \end{pmatrix}.$$

We find $\begin{pmatrix} 6 & 6 & 24 \\ 6 & 14 & 16 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & -1 \end{pmatrix}$, so $v = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ and therefore

$$w = Av = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -6 \\ 8 \\ 2 \end{pmatrix}.$$

1

2 Solutions

b) Find the distance from w to $\begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.

$$||x - w|| = \left| \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} -6 \\ 8 \\ 2 \end{pmatrix} \right| = \left| \begin{pmatrix} 6 \\ 6 \\ -6 \end{pmatrix} \right| = \sqrt{36 + 36 + 36} = \sqrt{108} = 6\sqrt{3}.$$

c) Find the standard matrix for the orthogonal projection onto Span $\{v_1\}$.

$$B = \frac{1}{\nu_1 \cdot \nu_1} \nu_1 \nu_1^T = \frac{1}{(-1)^2 + 2^2 + 1^2} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & -2 & -1 \\ -2 & 4 & 2 \\ -1 & 2 & 1 \end{pmatrix}$$

d) Find the standard matrix for the orthogonal projection onto *W*.

Let $A = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix}$. Since the columns of A are linearly independent, our pro-

jection matrix is $A(A^TA)^{-1}A^T$. We already computed A^TA in part (a), so our matrix is

$$A(A^{T}A)^{-1}A^{T} = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 6 & 6 \\ 6 & 14 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 6 & 6 \\ 6 & 14 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$
$$= \frac{1}{48} \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 14 & -6 \\ -6 & 6 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

3. Find the least-squares line y = Mx + B that approximates the data points

$$(-2,-11), (0,-2), (4,2).$$

Solution.

If there were a line through the three data points, we would have:

$$(x = -2)$$
 $B + M(-2) = -11$
 $(x = 0)$ $B + M(0) = -2$
 $(x = 4)$ $B + M(4) = 2$.
 $\begin{pmatrix} 1 & -2 \\ \end{pmatrix}$ $\begin{pmatrix} B \\ \end{pmatrix}$ $\begin{pmatrix} -11 \\ \end{pmatrix}$

This is the matrix equation $\begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} B \\ M \end{pmatrix} = \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix}$.

Thus, we are solving the least-squares problem to Av = b, where

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix} \qquad b = \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix}.$$

We solve $A^T A \hat{x} = A^T b$, where $\hat{x} = \begin{pmatrix} B \\ M \end{pmatrix}$.

$$A^{T}A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 20 \end{pmatrix},$$

$$A^{\mathsf{T}}b = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -11 \\ 30 \end{pmatrix}.$$

$$\begin{pmatrix} 3 & 2 & | & -11 \\ 2 & 20 & | & 30 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 2 & 20 & | & 30 \\ 3 & 2 & | & -11 \end{pmatrix} \xrightarrow{R_2 = R_2 - \frac{3R_1}{2}} \begin{pmatrix} 1 & 10 & | & 15 \\ 0 & -28 & | & -56 \end{pmatrix} \xrightarrow{R_2 = -\frac{R_2}{28}} \begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 2 \end{pmatrix}.$$

So
$$\widehat{x} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
. In other words, $y = -5 + 2x$, or $y = 2x - 5$.