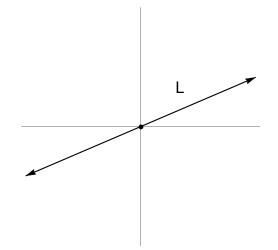
Supplemental problems: §5.1

- **1.** True or false. Answer true if the statement is always true. Otherwise, answer false.
 - **a)** If A and B are $n \times n$ matrices and A is row equivalent to B, then A and B have the same eigenvalues.
 - b) If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n , then A is invertible.
 - c) If 0 is an eigenvalue of the $n \times n$ matrix A, then rank(A) < n.
 - **d**) The diagonal entries of an $n \times n$ matrix A are its eigenvalues.
 - e) If A is invertible and 2 is an eigenvalue of A, then $\frac{1}{2}$ is an eigenvalue of A^{-1} .
 - f) If det(A) = 0, then 0 is an eigenvalue of A.
 - g) If v and w are eigenvectors of a square matrix A, then so is v + w.
- **2.** In this problem, you need not explain your answers; just circle the correct one(s).

Let *A* be an $n \times n$ matrix.

- a) Which one of the following statements is correct?
 - 1. An eigenvector of *A* is a vector *v* such that $Av = \lambda v$ for a nonzero scalar λ.
 - 2. An eigenvector of *A* is a nonzero vector *v* such that $Av = \lambda v$ for a scalar λ.
 - 3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.
 - 4. An eigenvector of *A* is a nonzero vector *v* such that $Av = \lambda v$ for a nonzero scalar λ .
- **b)** Which **one** of the following statements is **not** correct?
 - 1. An eigenvalue of A is a scalar λ such that $A \lambda I$ is not invertible.
 - 2. An eigenvalue of *A* is a scalar λ such that $(A \lambda I)v = 0$ has a solution.
 - 3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector ν.
 - 4. An eigenvalue of *A* is a scalar λ such that det($A \lambda I$) = 0.
- **3.** Find a basis \mathcal{B} for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$


- **4.** Suppose *A* is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of *A*. Justify your answer.
- **5.** Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3 . There is a unique correspondence. Justify the correspondences in words.

(i)
$$Ax = \begin{pmatrix} 5\\1\\2 \end{pmatrix}$$
 has a unique solution.

(ii) The transformation T(v) = Av fixes a nonzero vector.

(iii) *A* is obtained from *B* by subtracting the third row of *B* from the first row of *B*.(iv) The columns of *A* and *B* are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of *B*.(v) The columns of *A*, when added, give the zero vector.

- (a) 0 is an eigenvalue of *A*.
 (b) *A* is invertible.
 (c) det(*A*) = det(*B*)
 (d) det(*A*) = det(*B*)
 (e) 1 is an eigenvalue of *A*.
- **6.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which reflects across the line *L* drawn below, and let *A* be the standard matrix for *T*.

a) Write all eigenvalues of *A*.

b) For each eigenvalue of *A*, draw one eigenvector on the graph above. Your eigenvector does not need to be perfect, but it should be reasonably accurate.