Supplemental problems: Chapter 4, Determinants

1. If A is an $n \times n$ matrix, is it necessarily true that $\operatorname{det}(-A)=-\operatorname{det}(A)$? Justify your answer.
2. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.
3. Find the volume of the parallelepiped in \mathbf{R}^{4} naturally determined by the vectors

$$
\left(\begin{array}{l}
4 \\
1 \\
3 \\
8
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
7 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
-5 \\
0 \\
7
\end{array}\right)
$$

4. Let $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & 7\end{array}\right)$, and define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=A x$. Find the area of $T(S)$, if S is a triangle in \mathbf{R}^{2} with area 2.
5. Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}(B)$.
c) Compute $\operatorname{det}(A B)$.
d) Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.
6. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(-2 A)$?
7. a) Is there a real 2×2 matrix A that satisfies $A^{4}=-I_{2}$? Either write such an A, or show that no such A exists.
(hint: think geometrically! The matrix $-I_{2}$ represents rotation by π radians).
b) Is there a real 3×3 matrix A that satisfies $A^{4}=-I_{3}$? Either write such an A, or show that no such A exists.

