Supplemental problems: §3.2

1. Let A be a 3×4 matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$, and suppose $v_{2}=2 v_{1}-3 v_{4}$. Consider the matrix transformation $T(x)=A x$.
a) Is it possible that T is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that $T(v)=T(w)$.
b) Is it possible that T is onto? Justify your answer.
2. a) Which of the following are onto transformations? (Check all that apply.)
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, reflection over the $x y$-plane
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, projection onto the $x y$-plane
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$, project onto the $x y$-plane, forget the z-coordinate
\square $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, scale the x-direction by 2
b) Let A be a square matrix (square means $n \times n$) and let $T(x)=A x$. Which of the following guarantee that T is onto? (Check all that apply.)
$\square T$ is one-to-one

$$
\square A x=0 \text { is consistent }
$$

3. Which of the following transformations are one-to-one? Circle all that apply.
(i) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by $T(x, y)=(x-y, x-2 y, x+y)$.
(ii) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates vectors counterclockwise by 17 degrees.
(iii) The transformation $T(x)=A x$, where $A=\left(\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right)$.
4. Which of the following transformations are onto? Circle all that apply.
(i) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(x+y, x+y)$.
(ii) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates vectors counterclockwise by 17 degrees.
(iii) The transformation $T(x)=A x$, where A is a 3×3 matrix with the property that the equation $A v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ has exactly one solution.
5. Find all real numbers h so that the transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by

$$
T(v)=\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) v
$$

is onto.

Supplemental problems: §3.3

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is linear and $T\left(e_{1}\right)=T\left(e_{2}\right)$, then the homogeneous equation $T(x)=0$ has infinitely many solutions.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $: \mathbf{R}^{n} \rightarrow \mathbf{R}^{\mathrm{m}}$ is a one-to-one linear transformation and $m \neq n$, then T must not be onto.
2. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.
3. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(y, y)$.
b) JUST FOR FUN: Consider $T:(S m o o t h ~ f u n c t i o n s) ~ \rightarrow ~(S m o o t h ~ f u n c t i o n s) ~$ given by $T(f)=f^{\prime}$ (the derivative of f). Then T is not a transformation from any \mathbf{R}^{n} to \mathbf{R}^{m}, but it is still linear in the sense that for all smooth f and g and all scalars c (by properties of differentiation we learned in Calculus 1):

$$
\begin{gathered}
T(f+g)=T(f)+T(g) \quad \text { since } \quad(f+g)^{\prime}=f^{\prime}+g^{\prime} \\
T(c f)=c T(f) \quad \text { since } \quad(c f)^{\prime}=c f^{\prime}
\end{gathered}
$$

Is T one-to-one?
4. In each case, determine whether T is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.
5. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0,0,0),(2,0,0)$, $(0,2,0)$, and $(1,1,1)$.

The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis (look downward onto the $x y$-plane the way we usually picture the plane as \mathbf{R}^{2}), and then projected onto the $x y$-plane.

In the worksheet, we found the matrix for the transformation T caused by the wolf. Geometrically describe the image of the house under T.

