Chapter 3

Linear Transformations and Matrix Algebra

Section 3.1

Matrix Transformations

Motivation

Let A be a matrix, and consider the matrix equation $b=A x$. If we vary x, we can think of this as a function of x.

Many functions in real life-the linear transformations-come from matrices in this way.

It makes us happy when a function comes from a matrix, because then questions about the function translate into questions a matrix, which we can usually answer.

For this reason, we want to study matrices as functions.

Matrices as Functions

Change in Perspective. Let A be a matrix with m rows and n columns. Let's think about the matrix equation $b=A x$ as a function.

- The independent variable (the input) is x, which is a vector in \mathbf{R}^{n}.
- The dependent variable (the output) is b, which is a vector in \mathbf{R}^{m}.

As you vary x, then $b=A x$ also varies. The set of all possible output vectors b is the column space of A.

Matrices as Functions

Projection

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{3} and the output vector b is in \mathbf{R}^{3}. Then

$$
A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) .
$$

This is projection onto the xy-plane. Picture:

Matrices as Functions

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

This is reflection over the y-axis. Picture:

[interactive]

Matrices as Functions

$$
A=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}.

$$
A\binom{x}{y}=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y} .
$$

This is dilation (scaling) by a factor of 1.5. Picture:

[interactive]

Matrices as Functions

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}.

$$
A\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x}{y} .
$$

This is the identity transformation which does nothing. Picture:

[interactive]

Matrices as Functions

Rotation

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x}{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x} .
$$

What is this? Let's plug in a few points and see what happens.

$$
\begin{aligned}
A\binom{1}{2} & =\binom{-2}{1} \\
A\binom{-1}{1} & =\binom{-1}{-1} \\
A\binom{0}{-2} & =\binom{2}{0}
\end{aligned}
$$

It looks like counterclockwise rotation by 90°.

Matrices as Functions

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

In the equation $A x=b$, the input vector x is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x}{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x} .
$$

[interactive]

Other Geometric Transformations

In $\S 3.1$ there are other examples of geometric transformations of \mathbf{R}^{2} given by matrices. Please look them over.

Transformations

We have been drawing pictures of what it looks like to multiply a matrix by a vector, as a function of the vector.

Now let's go the other direction. Suppose we have a function, and we want to know, does it come from a matrix?

Example

For a vector x in \mathbf{R}^{2}, let $T(x)$ be the counterclockwise rotation of x by an angle θ. Is $T(x)=A x$ for some matrix A ?

If $\theta=90^{\circ}$, then we know $T(x)=A x$, where

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

But for general θ, it's not clear.

Our next goal is to answer this kind of question.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

- \mathbf{R}^{n} is called the domain of T (the inputs).
- \mathbf{R}^{m} is called the codomain of T (where the outputs live).
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is the image of x under T. Notation: $x \mapsto T(x)$.
- The set of all images $\left\{T(x) \mid x\right.$ in $\left.\mathbf{R}^{n}\right\}$ is the range of T.

Notation:

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { means } \quad T \text { is a transformation from } \mathbf{R}^{n} \text { to } \mathbf{R}^{m}
$$

It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the output.

Functions from Calculus

Many of the functions you know and love have domain and codomain R.

$$
\sin : \mathbf{R} \longrightarrow \mathbf{R} \quad \sin (x)=\left(\begin{array}{l}
\text { the length of the opposite edge over the } \\
\text { hypotenuse of a right triangle with angle } \\
x \text { in radians }
\end{array}\right)
$$

Note how l've written down the rule that defines the function sin.

$$
f: \mathbf{R} \longrightarrow \mathbf{R} \quad f(x)=x^{2}
$$

Note that " $x^{2 \text { " }}$ is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

The horizontal axis is the domain, and the vertical axis is the codomain.

This is fine when the domain and codomain are \mathbf{R}, but it's hard to do when they're \mathbf{R}^{2} and \mathbf{R}^{3} ! You need five dimensions to draw that graph.

Functions from Engineering

Suppose you are building a robot arm with three joints that can move its hand around a plane, as in the following picture.

Define a transformation $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$:

$$
f(\theta, \varphi, \psi)=\text { position of the hand at joint angles } \theta, \varphi, \psi .
$$

Output of f : where is the hand on the plane.

This function does not come from a matrix; belongs to the field of inverse kinematics.

Matrix Transformations

Definition

Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x
$$

In other words, T takes the vector x in \mathbf{R}^{n} to the vector $A x$ in \mathbf{R}^{m}.
For example, if $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $T(x)=A x$ then

$$
T\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)=\binom{-14}{-32}
$$

- The domain of T is \mathbf{R}^{n}, which is the number of columns of A.
- The codomain of T is \mathbf{R}^{m}, which is the number of rows of A.
- The range of T is the set of all images of T :

$$
T(x)=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

This is the column space of A. It is a span of vectors in the codomain.

Matrix Transformations

Example

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
2 & 1 \\
1 & -1
\end{array}\right) \quad T(x)=A x \quad T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}
$$

Domain is: \mathbf{R}^{2}. Codomain is: \mathbf{R}^{3}. Range is: all vectors of the form

$$
T\binom{x}{y}=A\binom{x}{y}=x\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)+y\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

which is $\operatorname{Col} A$.

range (T)

[interactive]
codomain

Matrix Transformations

The picture of a matrix transformation is the same as the pictures we've been drawing all along. Only the language is different. Let

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and let } \quad T(x)=A x
$$

so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Then

$$
T\binom{x}{y}=A\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

which is still is reflection over the y-axis. Picture:

Poll

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} .(T$ is called a shear.)

Poll
What does T do to this sheep?
Hint: first draw a picture what it does to the box around the sheep.

Summary

- We can think of $b=A x$ as a transformation with input x and output b.
- There are vocabulary words associated to transformations: domain, codomain, range.
- A transformation that comes from a matrix is called a matrix transformation.
- In this case, the vocabulary words mean something concrete in terms of matrices.
- We like transformations that come from matrices, because questions about those transformations turn into questions about matrices.

