Supplemental problems: §1.2, §1.3

1. True or false.
a) If the RREF of an augmented matrix has a pivot in every column, then the corresponding system of linear equations must be consistent.
b) If the RREF of an augmented matrix has a pivot in every column except its rightmost column, then the corresponding system of linear equations has exactly one solution.
c) If the RREF of an augmented matrix has final row ($\left.\begin{array}{lll|}0 & 0 & 0 \mid 0\end{array}\right)$, then the corresponding system of linear equations has infinitely many solutions.
2. Is the matrix below in reduced row echelon form?

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 0 & -3 & 1 \\
0 & 0 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

3. Put an augmented matrix into reduced row echelon form to solve the system

$$
\begin{gathered}
x_{1}-2 x_{2}-9 x_{3}+x_{4}=3 \\
4 x_{2}+8 x_{3}-24 x_{4}=4
\end{gathered}
$$

4. a) Row reduce the following matrices to reduced row echelon form.
b) If these are augmented matrices for a linear system (with the last column being after the $=\operatorname{sign}$), then which are inconsistent? Which have a unique solution?

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
6 & 7 & 8 & 9
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 9 \\
5 & 7 & 9 & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
3 & -4 & 2 & 0 \\
-8 & 12 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right)
$$

5. We can use linear algebra to find a polynomial that fits given data, in the same way that we found a circle through three specified points in the Webwork.

Is there a degree-three polynomial $P(x)$ whose graph passes through the points $(-2,6),(-1,4),(1,6)$, and $(2,22)$? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.
a) If $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is a degree-three polynomial passing through the four points listed above, then $P(-2)=6, P(-1)=4, P(1)=6$, and $P(2)=22$. Write a system of four equations which we would solve to find a_{0}, a_{1}, a_{2}, and a_{3}.
b) Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?
6. Consider the linear equation in the variables x_{1}, x_{2}, and x_{3} given by

$$
x_{1}-x_{2}+x_{3}=5
$$

If we write the general solution to this system in parametric form, we will find that x_{2} and x_{3} are free and so

$$
x_{1}=x_{2}-x_{3}+5, \quad x_{2}=x_{2} \quad\left(x_{2} \text { real }\right), \quad x_{3}=x_{3} \quad\left(x_{3} \text { real }\right)
$$

Is the following also a parametrization of the solution set?

$$
x_{1}=x_{1} \quad\left(x_{1} \text { real }\right), \quad x_{2}=x_{2} \quad\left(x_{2} \text { real }\right), \quad x_{3}=-x_{1}+x_{2}+5 \quad\left(x_{3} \text { real }\right),
$$

