Supplemental problems: §1.2, §1.3

1. True or false.
a) If the RREF of an augmented matrix has a pivot in every column, then the corresponding system of linear equations must be consistent.
b) If the RREF of an augmented matrix has a pivot in every column except its rightmost column, then the corresponding system of linear equations has exactly one solution.
c) If the RREF of an augmented matrix has final row ($\left.\begin{array}{lll|}0 & 0 & 0 \mid 0\end{array}\right)$, then the corresponding system of linear equations has infinitely many solutions.

Solution.

a) False. The system will be inconsistent because there is a pivot in the rightmost column, for example $\left(\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
b) True. This means the system is consistent and has no free variables.
c) False. We cannot tell anything about the system just knowing this information, as it might have no solutions, or exactly one solution, or infinitely many solutions. For example,

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

2. Is the matrix below in reduced row echelon form?

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 0 & -3 & 1 \\
0 & 0 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution.

Yes.

3. Put an augmented matrix into reduced row echelon form to solve the system

$$
\begin{gathered}
x_{1}-2 x_{2}-9 x_{3}+x_{4}=3 \\
4 x_{2}+8 x_{3}-24 x_{4}=4
\end{gathered}
$$

Solution.

$$
\left(\begin{array}{rrrr|r}
1 & -2 & -9 & 1 & 3 \\
0 & 4 & 8 & -24 & 4
\end{array}\right) \xrightarrow{R_{2}=\frac{R_{2}}{4}}\left(\begin{array}{rrrr|r}
1 & -2 & -9 & 1 & 3 \\
0 & 1 & 2 & -6 & 1
\end{array}\right) \xrightarrow{R_{1}=R_{1}+2 R_{2}}\left(\begin{array}{rrrrr|r}
\boxed{1} & 0 & -5 & -11 & 5 \\
0 & 1 & 2 & -6 & 1
\end{array}\right)
$$

The third and fourth columns are not pivot columns, so x_{3} and x_{4} are free variables. Our equations are

$$
\begin{gathered}
x_{1}-5 x_{3}-11 x_{4}=5 \\
x_{2}+2 x_{3}-6 x_{4}=1 .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& x_{1}=5+5 x_{3}+11 x_{4} \\
& x_{2}=1-2 x_{3}+6 x_{4} \\
& x_{3}=x_{3} \quad(\text { any real number }) \\
& x_{4}=x_{4} \quad(\text { any real number })
\end{aligned}
$$

4. a) Row reduce the following matrices to reduced row echelon form.
b) If these are augmented matrices for a linear system (with the last column being after the $=\operatorname{sign}$), then which are inconsistent? Which have a unique solution?

Solution.

$$
\begin{aligned}
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
6 & 7 & 8 & 9
\end{array}\right)
\end{aligned} \begin{gathered}
R_{2}=R_{2}-4 R_{1} \\
\text { mamminnin }
\end{gathered}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -3 & -6 & -9 \\
6 & 7 & 8 & 9
\end{array}\right)
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it corresponds to the system of linear equations

$$
\begin{aligned}
x \quad-z & =-2 \\
y+2 z & =3 \\
0 & =0 .
\end{aligned}
$$

This system is consistent, but since z is a free variable, it does not have a unique solution.

$$
\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 9 \\
5 & 7 & 9 & 1
\end{array}\right) \quad \begin{aligned}
& R_{2}=R_{2}-3 R_{1} \\
& \text { mmmmmmin» }
\end{aligned}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
5 & 7 & 9 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \underset{3}{R_{3}=R_{3}-5 R_{1}}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \xrightarrow[2]{R_{2}=R_{2} \div-4}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \underset{3}{R_{3}=R_{3}+8 R_{2}}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -10
\end{array}\right) \\
& R_{3}=R_{3} \div-10\left(\begin{array}{llll}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \underset{R_{1}=R_{1}-7 R_{3}}{R_{1}}\left(\begin{array}{llll}
1 & 3 & 5 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \underset{R_{2}=R_{2}-3 R_{3}}{R_{m}}\left(\begin{array}{llll}
1 & 3 & 5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[R_{1}=R_{1}-3 R_{2}]{R_{1}}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it corresponds to the system of linear equations

$$
\begin{aligned}
x \quad-z & =0 \\
y+2 z & =0 \\
0 & =1,
\end{aligned}
$$

which is inconsistent.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & -4 & 2 & 0 \\
-8 & 12 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \quad \begin{array}{c}
R_{2}=R_{2}+3 R_{1}
\end{array}\left(\begin{array}{cccc}
3 & -4 & 2 & 0 \\
1 & 0 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{\sim}{R_{1}} \longleftrightarrow R_{2}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
3 & -4 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{\sim}{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{R_{3}=R_{3}+6 R_{1}}{\substack{1 \\
0}}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
0 & 8 & 11 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[2]{R_{2}=R_{2} \div-4}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 8 & 11 & 0
\end{array}\right) \\
& \underset{3}{R_{3}=R_{3}-8 R_{2}}\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 3 & 0
\end{array}\right) \\
& \xrightarrow{R_{3}=R_{3} \div 3}\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \underset{R_{1}=R_{1}-2 R_{3}}{R_{1}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \underset{2}{R_{2}=R_{2}-R_{3}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it corresponds to the system of linear equations

$$
x=0 \quad y=0 \quad z=0,
$$

which has a unique solution.
5. We can use linear algebra to find a polynomial that fits given data, in the same way that we found a circle through three specified points in the Webwork.

Is there a degree-three polynomial $P(x)$ whose graph passes through the points $(-2,6),(-1,4),(1,6)$, and $(2,22)$? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.
a) If $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is a degree-three polynomial passing through the four points listed above, then $P(-2)=6, P(-1)=4, P(1)=6$, and $P(2)=22$. Write a system of four equations which we would solve to find a_{0}, a_{1}, a_{2}, and a_{3}.
b) Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?

Solution.

a) We compute

$$
\begin{array}{rlr}
P(-2)=6 & \Longrightarrow & a_{0}+a_{1} \cdot(-2)+a_{2} \cdot(-2)^{2}+a_{3} \cdot(-2)^{3}=6 \\
P(-1)=4 & \Longrightarrow & a_{0}+a_{1} \cdot(-1)+a_{2} \cdot(-1)^{2}+a_{3} \cdot(-1)^{3}=4 \\
P(1)=6 & \Longrightarrow & a_{0}+a_{1} \cdot 1+a_{2} \cdot 1^{2}+a_{3} \cdot 1^{3}=6 \\
P(2)=22 & \Longrightarrow & a_{0}+a_{1} \cdot 2+a_{2} \cdot 2^{2}+a_{3} \cdot 2^{3}=22 .
\end{array}
$$

Simplifying gives us

$$
\begin{aligned}
& a_{0}-2 a_{1}+4 a_{2}-8 a_{3}=6 \\
& a_{0}-a_{1}+a_{2}-a_{3}=4 \\
& a_{0}+a_{1}+a_{2}+a_{3}=6 \\
& a_{0}+2 a_{1}+4 a_{2}+8 a_{3}=22
\end{aligned}
$$

b) The corresponding augmented matrix is

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 4 & -8 & 6 \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 6 \\
1 & 2 & 4 & 8 & 22
\end{array}\right)
$$

We label pivots with boxes as we proceed along. First, we subtract row 1 from each of rows 2,3 , and 4.

We now create zeros below the second pivot by subtracting multiples of the second row, then divide by 6 to get

$$
\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 4 & -8 & 6 \\
0 & \boxed{1} & -3 & 7 & -2 \\
0 & 0 & \boxed{6} & -12 & 6 \\
0 & 0 & 12 & -12 & 24
\end{array}\right) \quad \begin{gathered}
R_{3}=R_{3} \div 6 \\
\text { mannum }
\end{gathered}\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 4 & -8 & 6 \\
0 & \boxed{1} & -3 & 7 & -2 \\
0 & 0 & \boxed{1} & -2 & 1 \\
0 & 0 & 12 & -12 & 24
\end{array}\right)
$$

Now we subtract a 12 times row 3 from row 4 and divide by 12 :

At this point we can actually use back-substitution to solve: the last row says $a_{3}=1$, then plugging in $a_{3}=1$ in the third row gives us $a_{2}=3$, etc. However, for the sake of practice with reduced echelon form, let's keep row-reducing.

From right to left, we create zeros above the pivots in pivot columns by subtracting multiples of the pivot columns.

$$
\begin{aligned}
& \underset{\sim m a n}{ } \rightarrow\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 3 \\
0 & 0 & 0 & \boxed{1} & 1
\end{array}\right) \\
& \left.\underset{\operatorname{man} \rightarrow}{ } \begin{array}{ccccc|c}
\boxed{1} & 0 & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 3 \\
0 & 0 & 0 & \boxed{1} & 1
\end{array}\right)
\end{aligned}
$$

So $a_{0}=2, a_{1}=0, a_{2}=3$, and $a_{3}=1$. In other words,

$$
P(x)=2+3 x^{2}+x^{3} .
$$

Therefore, there is exactly one third-degree polynomial satisfying the conditions of the problem. (You should check that, in fact, we have $P(-2)=$ $6, P(-1)=4$, etc.)
6. Consider the linear equation in the variables x_{1}, x_{2}, and x_{3} given by

$$
x_{1}-x_{2}+x_{3}=5
$$

If we write the general solution to this system in parametric form, we will find that x_{2} and x_{3} are free and so

$$
x_{1}=x_{2}-x_{3}+5, \quad x_{2}=x_{2} \quad\left(x_{2} \text { real }\right), \quad x_{3}=x_{3} \quad\left(x_{3} \text { real }\right)
$$

Is the following also a parametrization of the solution set?

$$
x_{1}=x_{1} \quad\left(x_{1} \text { real }\right), \quad x_{2}=x_{2} \quad\left(x_{2} \text { real }\right), \quad x_{3}=-x_{1}+x_{2}+5 \quad\left(x_{3} \text { real }\right)
$$

Solution.

Yes. The second parametrization might look different than the first, but it still describes the same set of points: if we expand $x_{1}-x_{2}+x_{3}$, we obtain

$$
x_{1}-x_{2}+x_{3}=x_{1}-x_{2}+\left(-x_{1}+x_{2}+5\right)=5
$$

The difference is that due to the way we assign free variables in parametric form, here we get x_{2} and x_{3} free so that x_{1} depends on x_{2} and x_{3}, whereas the second parametrization treats x_{1} and x_{2} as free so that x_{3} depends on x_{1} and x_{2}. In both cases, the parametrizations describe the plane in \mathbf{R}^{3} given by $x_{1}-x_{2}+x_{3}=5$.

By designating one standard "parametric form" and having everyone write solution sets in that form, we avoid having to go through the extra step of trying to determine whether one parametrization is equivalent to another.

