
Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent
links from one page towards another. For example, page 1 links to page 4 but not
vice versa.

a) Write the importance matrix and the Google matrix for this internet using
damping constant p = 0.15. You don’t need to simplify the Google matrix.

b) The steady-state vector for the Google matrix is (approximately)






0.23
0.23
0.23
0.31






.

What is the top-ranked page?

Solution.
(a) The importance matrix is

A=







0 0 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1 0 0







The Google matrix is
(1− p)A+ pB

0.85







0 0 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1 0 0






+ (0.15)

1
4







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






.

(b) From the steady-state vector we see page 4 has the highest rank.

2. The companies X, Y, and Z fight for customers. This year, company X has 40 cus-
tomers, Company Y has 15 customers, and Z has 20 customers. Each year, the
following changes occur:
• X keeps 75% of its customers, while losing 15% to Y and 10% to Z.
• Y keeps 60% of its customers, while losing 5% to X and 35% to Z.
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2 SOLUTIONS

• Z keeps 65% of its customers, while losing 15% to X and 20% to Y.
Write a stochastic matrix A and a vector x so that Ax will give the number of

customers for firms X, Y, and Z (respectively) after one year. You do not need to
compute Ax .

Solution.

A=

 

0.75 0.05 0.15
0.15 0.6 0.20
0.1 0.35 0.65

!

x =

 

40
15
20

!

.

3. Suppose p and q are real numbers on the open interval (0,1), and

A=
�

p 1− q
1− p q

�

(1) Is A a positive stochastic matrix? Why?
(2) Does A have unique steady state vector? Why?
(3) Without computation, give an eigenvalue of A.
(4) Compute the steady-state vector of A.

Solution.
(1) Yes: columns sum to 1, all entries strictly positive
(2) Yes: A is a positive stochastic matrix, so the Perron-Frobenius theorem applies.
(3) λ= 1
(4) Solving (A− I)v = 0 and scaling v to get the steady-state vector w, we get

w=
1

2− p− q

�

1− q
1− p

�

.
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Supplemental problems: Chapter 6

1. True or false. If the statement is always true, answer true. Otherwise, answer false.
Justify your answer.

a) Suppose W = Span{w} for some vector w 6= 0, and suppose v is a vector
orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.

b) Suppose W is a subspace of Rn and x is a vector in Rn. If x is not in W , then
x − xW is not zero.

c) Suppose W is a subspace of Rn and x is in both W and W⊥. Then x = 0.

d) Suppose bx is a least squares solution to Ax = b. Then bx is the closest vector
to b in the column space of A.

Solution.

a) True. Since v ∈W⊥, its projection onto W is zero.

b) True. If x is not in W then x 6= xW , so x − xW is not zero.

c) True. Since x is in W and W⊥ it is orthogonal to itself, so ||x ||2 = x · x = 0.
The length of x is zero, which means every entry of x is zero, hence x = 0.

d) False: Abx is the closest vector to b in Col A.

2. Let W = Span{v1, v2}, where v1 =

 −1
2
1

!

and v2 =

 

1
2
3

!

.

a) Find the closest point w in W to x =

 

0
14
−4

!

.

Let A=

 −1 1
2 2
1 3

!

. We solve AT Av = AT x .

AT A=
�

6 6
6 14

�

AT

 

0
14
−4

!

=
�

24
16

�

.

We find
�

6 6 24
6 14 16

�

RREF
−−→

�

1 0 5
0 1 −1

�

, so v =
�

5
−1

�

and therefore

w= Av =

 −1 1
2 2
1 3

!

�

5
−1

�

=

 −6
8
2

!

.



4 SOLUTIONS

b) Find the distance from w to

 

0
14
−4

!

.

||x −w||=

�

�

�

�

�

�

�

�

�

�

�

�

 

0
14
−4

!

−

 −6
8
2

!

�

�

�

�

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

�

�

 

6
6
−6

!

�

�

�

�

�

�

�

�

�

�

�

�

=
p

36+ 36+ 36=
p

108= 6
p

3.

c) Find the standard matrix for the orthogonal projection onto Span{v1}.

B =
1

v1 · v1
v1vT

1 =
1

(−1)2 + 22 + 12

 −1
2
1

!

�

−1 2 1
�

=
1
6

 

1 −2 −1
−2 4 2
−1 2 1

!

d) Find the standard matrix for the orthogonal projection onto W .

Let A=

 −1 1
2 2
1 3

!

. Since the columns of A are linearly independent, our pro-

jection matrix is A(AT A)−1AT . We already computed AT A in part (a), so our
matrix is

A(AT A)−1AT =

 −1 1
2 2
1 3

!

�

6 6
6 14

�−1�−1 2 1
1 2 3

�

=

 −1 1
2 2
1 3

!

�

6 6
6 14

�−1�−1 2 1
1 2 3

�

=
1

48

 −1 1
2 2
1 3

!

�

14 −6
−6 6

��

−1 2 1
1 2 3

�

=
1
3

 

2 −1 1
−1 2 1
1 1 2

!

.

3. Find the least-squares line y = M x + B that approximates the data points

(−2,−11), (0,−2), (4,2).

Solution.

If there were a line through the three data points, we would have:

(x = −2) B +M(−2) = −11

(x = 0) B +M(0) = −2

(x = 4) B +M(4) = 2.

This is the matrix equation

 

1 −2
1 0
1 4

!

�

B
M

�

=

 −11
−2
2

!

.
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Thus, we are solving the least-squares problem to Av = b, where

A=

 

1 −2
1 0
1 4

!

b =

 −11
−2
2

!

.

We solve AT Abx = AT b, where bx =
�

B
M

�

.

AT A=
�

1 1 1
−2 0 4

�

 

1 −2
1 0
1 4

!

=
�

3 2
2 20

�

,

AT b =
�

1 1 1
−2 0 4

�

 −11
−2
2

!

=
�

−11
30

�

.

�

3 2 −11
2 20 30

�

R1↔R2−−−−→
�

2 20 30
3 2 −11

�

R2 = R2−
3R1

2−−−−−−−→
R1 = R1/2

�

1 10 15
0 −28 −56

�

R2 = −
R2
28−−−−−−−−→

R1 = R1−10R2

�

1 0 −5
0 1 2

�

.

So bx =
�

−5
2

�

. In other words, y = −5+ 2x , or y = 2x − 5 .


