Math 1553 Worksheet §6.1 - §6.5
Solutions

1. True/False
 (1) If \(u \) is in subspace \(W \), and \(u \) is also in \(W^\perp \), then \(u = 0 \).
 (2) If \(y \) is in a subspace \(W \), the orthogonal projection of \(y \) onto \(W^\perp \) is 0.
 (3) If \(x \) is orthogonal to \(v \) and \(w \), then \(x \) is also orthogonal to \(v - w \).

Solution.
 (1) TRUE: Such a vector \(u \) would be orthogonal to itself, so \(u \cdot u = ||u||^2 = 0 \).

 Therefore, \(u \) has length 0, so \(u = 0 \).
 (2) TRUE: \(y \) is in \(W \), so \(y \perp W^\perp \). Its orthogonal projection onto \(W \) is \(y \) and orthogonal projection onto \(W^\perp \) is 0. In fact \(y \) has orthogonal decomposition \(y = y + 0 \), where \(y \) is in \(W \) and 0 is in \(W^\perp \).
 (3) TRUE: By properties of the dot product, if \(x \) is orthogonal to \(v \) and \(w \) then \(x \) is orthogonal to everything in \(\text{Span}\{v, w\} \) (which includes \(v - w \)).

2. a) Find the standard matrix \(B \) for \(\text{proj}_L \), where \(L = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\} \).

b) What are the eigenvalues of \(B \)? Is \(B \) is diagonalizable? If so, find an invertible \(C \) and diagonal \(D \) so that \(B = CDC^{-1} \)?

c) Describe the column space and null space of the matrix \(B \) in terms of \(L \).

Solution.
 a) We use the formula \(B = \frac{1}{u \cdot u} uu^T \) where \(u = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) (this is the formula \(B = A(A^TA)^{-1}A^T \) when “A” is just the single vector \(u \)).

\[
B = \frac{1}{1(1) + 1(1) + (-1)(-1)} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}
\]

\[\implies B = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \]

b) \(Bx = x \) for every \(x \) in \(L \), and \(Bx = 0 \) for every \(x \) in \(L^\perp \), so \(B \) has two eigenvalues: \(\lambda_1 = 1 \) with algebraic (and geometric) multiplicity 1, \(\lambda_2 = 0 \) with algebraic (and geometric) multiplicity 2. Here \(v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) is an eigenvector for \(\lambda_1 = 1 \), whereas \(v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \) and \(v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) are eigenvectors for \(\lambda_2 = 0 \).
Therefore

\[
B = \begin{pmatrix}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & 1 \\
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & -1 & 0 \\
\end{pmatrix}^{-1}
\]

c) \(\text{Col}(B) = L \) and \(\text{Nul}(B) = L^\perp \).

3. \(y = \begin{pmatrix}
0 \\
2 \\
4 \\
\end{pmatrix} \), \(u_1 = \begin{pmatrix}
1 \\
1 \\
0 \\
\end{pmatrix} \), \(u_2 = \begin{pmatrix}
-1 \\
1 \\
0 \\
\end{pmatrix} \)

1) Determine whether \(u_1 \) and \(u_2 \)
 (a) are linearly independent
 (b) are orthogonal
 (c) span \(\mathbb{R}^3 \)

2) Is \(y \) in \(W = \text{Span}\{u_1, u_2\} \)?

3) Compute the vector \(w \) that most closely approximates \(y \) within \(W \).

4) Construct a vector, \(z \), that is in \(W^\perp \).

5) Make a rough sketch of \(W, y, w, \) and \(z \).

Solution.

1) A quick check shows that the vectors \(u_1 \) and \(u_2 \) are orthogonal and linearly independent, so \(\text{Span}\{u_1, u_2\} \) is a plane in \(\mathbb{R}^3 \), but is not all of \(\mathbb{R}^3 \).

2) By inspection, \(y \) is not in the span because it has a non-zero \(x_3 \) component.

3) The vector \(w \) is \(\text{proj}_W y \). The orthogonal projection of \(y \) onto \(W \) is calculated in the usual way.

\[
A^T Av = A^T b
\]

\[
A^T = \begin{pmatrix}
2 & 0 \\
0 & 2 \\
\end{pmatrix}, \quad A^T b = \begin{pmatrix}
2 \\
2 \\
\end{pmatrix}, \quad \text{so} \quad \begin{pmatrix}
2 & 0 \\
0 & 2 \\
\end{pmatrix} v = \begin{pmatrix}
2 \\
2 \\
\end{pmatrix}, \quad v = \begin{pmatrix}
1 \\
1 \\
\end{pmatrix}
\]

\[
w = Av = \begin{pmatrix}
1 & -1 \\
1 & 1 \\
0 & 0 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\end{pmatrix} = \begin{pmatrix}
0 \\
2 \\
0 \\
\end{pmatrix}.
\]

Another quick way to do this problem is note that \(W \) is the \(xy \)-plane of \(\mathbb{R}^3 \), so the projection of \(\begin{pmatrix}
0 \\
2 \\
4 \\
\end{pmatrix} \) onto \(W \) is just \(\begin{pmatrix}
0 \\
2 \\
0 \\
\end{pmatrix} \).

4) One vector in \(W^\perp \) is \(z = y - \text{proj}_W y = \begin{pmatrix}
0 \\
2 \\
4 \\
\end{pmatrix} - \begin{pmatrix}
0 \\
2 \\
4 \\
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
\end{pmatrix} \).

5) Here https://www.geogebra.org/calculator/ is a picture you can play with. The vector \(w \) is labeled “\(\text{\textcopyright} \) in the drawing.
4. a) Find the least squares solution \hat{x} to $Ax = e_1$, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$.

b) Find the best fit line $y = Ax + B$ through the points $(0, 0)$, $(1, 8)$, $(3, 8)$, and $(4, 20)$.

c) Set up an equation to find the best fit parabola $y = Ax^2 + Bx + C$ through the points $(0, 0)$, $(1, 8)$, $(3, 8)$, and $(4, 20)$.

Solution.

a) We need to solve the equation $A^T A \hat{x} = A^T e_1$. We compute:

$$A^T A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix},$$

$$A^T e_1 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix} e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Now we form the augmented matrix:

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/3 \end{pmatrix} \Rightarrow \hat{x} = \begin{pmatrix} 1/2 \\ 1/3 \end{pmatrix}.$$

b) We want to find a least squares solution to the system of linear equations

$$
\begin{align*}
0 &= A(0) + B \\
8 &= A(1) + B \\
8 &= A(3) + B \\
20 &= A(4) + B
\end{align*}
\iff
\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ 8 \end{pmatrix}.$$
We compute
\[
\begin{pmatrix} 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 26 & 8 \\ 8 & 4 \end{pmatrix}
\]
\[
\begin{pmatrix} 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} = \begin{pmatrix} 112 \\ 36 \end{pmatrix}
\]
\[
\begin{pmatrix} 26 & 8 & 112 \\ 8 & 4 & 36 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \end{pmatrix}.
\]
Hence the least squares solution is \(A = 4\) and \(B = 1\), so the best fit line is \(y = 4x + 1\).

c) We want to find a least squares solution to the system of linear equations
\[
\begin{align*}
0 &= A(0^2) + B(0) + C \\
8 &= A(1^2) + B(1) + C \\
8 &= A(3^2) + B(3) + C \\
20 &= A(4^2) + B(4) + C
\end{align*}
\]
\[
\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix}.
\]
We compute
\[
\begin{pmatrix} 0 & 1 & 9 & 16 \\ 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 338 & 92 & 26 \\ 92 & 26 & 8 \\ 26 & 8 & 4 \end{pmatrix}
\]
\[
\begin{pmatrix} 0 & 1 & 9 & 16 \\ 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} = \begin{pmatrix} 400 \\ 112 \\ 36 \end{pmatrix}
\]
\[
\begin{pmatrix} 338 & 92 & 26 & 400 \\ 92 & 26 & 8 & 112 \\ 26 & 8 & 4 & 36 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & 4/3 \\ 0 & 0 & 1 & 2 \end{pmatrix}.
\]
Hence the least squares solution is \(A = 2/3\), \(B = 4/3\), and \(C = 2\), so the best fit quadratic is \(y = \frac{2}{3}x^2 + \frac{4}{3}x + 2\).

There is a picture on the next page. The “best fit cubic" would be the cubic \(y = \frac{5}{3}x^3 - \frac{28}{3}x^2 + \frac{47}{3}x\), which actually passes through all four points. One can fit the points with even higher order polynomials.
\begin{align*}
y &= 4x + 1 \\
y &= \frac{2}{3}x^2 + \frac{4}{3}x + 2 \\
y &= \frac{5}{3}x^3 - \frac{28}{3}x^2 + \frac{47}{3}x
\end{align*}