1. True/False
 (1) If \(u \) is in subspace \(W \), and \(u \) is also in \(W^\perp \), then \(u = 0 \).

 (2) If \(y \) is in subspace \(W \), the orthogonal projection of \(y \) onto \(W \) is \(y \).

 (3) If \(x \) is orthogonal to \(v \) and \(w \), then \(x \) is also orthogonal to \(v - w \).

2. Give examples
 (1) two linearly independent vectors that are orthogonal to \[
 \begin{pmatrix}
 2 \\
 0 \\
 -1
 \end{pmatrix}
 .

 (2) a subspace of \(\mathbb{R}^3 \), \(S \), such that \(\dim(S^\perp) = 2 \).
3. a) Compute dot product of every pair of two vectors from
\[u = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \text{ and } w = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ -1 \end{pmatrix}. \]

b) What are the eigenvalues and eigenvectors of the 3 \times 3 matrix \(A = vv^T \)?

c) What is the column space and null space of the matrix \(A = vv^T \)?