Section 6.2

Orthogonal Complements
Orthogonal Complements

Definition
Let W be a subspace of \mathbb{R}^n. Its **orthogonal complement** is

$$W^\perp = \{ v \in \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \in W \}$$

read “W perp”.

W^\perp is orthogonal complement

A^T is transpose

Pictures:
The orthogonal complement of a line in \mathbb{R}^2 is the perpendicular line.

The orthogonal complement of a line in \mathbb{R}^3 is the perpendicular plane.

The orthogonal complement of a plane in \mathbb{R}^3 is the perpendicular line.
Let W be a 2-plane in \mathbb{R}^4. How would you describe W^\perp?

A. The zero space $\{0\}$.
B. A line in \mathbb{R}^4.
C. A plane in \mathbb{R}^4.
D. A 3-dimensional space in \mathbb{R}^4.
E. All of \mathbb{R}^4.

For example, if W is the xy-plane, then W^\perp is the zw-plane:

$$\begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ z \\ w \end{pmatrix} = 0.$$
Orthogonal Complements
Basic properties

Let W be a subspace of \mathbb{R}^n.

Facts:
1. W^\perp is also a subspace of \mathbb{R}^n
2. $(W^\perp)^\perp = W$
3. $\dim W + \dim W^\perp = n$
4. If $A = \begin{pmatrix} v_1 & v_2 & \cdots & v_m \end{pmatrix}$ and $W = \text{Col } A$, then $W^\perp = \text{Nul}(A^T)$ since

 $$W^\perp = \text{all vectors orthogonal to each } v_1, v_2, \ldots, v_m$$

 $$= \{ x \in \mathbb{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \ldots, m \}$$

 $$= \text{Nul} \begin{pmatrix} -v_1^T \\ -v_2^T \\ \vdots \\ -v_m^T \end{pmatrix} = \text{Nul}(A^T).$$

Let’s check 1.

- Is 0 in W^\perp? Yes: $0 \cdot w = 0$ for any w in W.
- Suppose x, y are in W^\perp. So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W. Then

 $$(x + y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$$

 for all w in W. So $x + y$ is also in W^\perp.
- Suppose x is in W^\perp. So $x \cdot w = 0$ for all w in W. If c is a scalar, then

 $$(cx) \cdot w = c(x \cdot 0) = c(0) = 0$$

 for any w in W. So cx is in W^\perp.
Orthogonal Complements

Problem: if $W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$, compute W^\perp.

By property 4, we have to find the null space of the matrix whose rows are $(1 \ 1 \ -1)$ and $(1 \ 1 \ 1)$, which we did before:

$$ \text{Nul} \left(\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right) = \text{Span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}. $$

[interactive]

$$ \text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul} \left(\begin{pmatrix} -v_1^T \\ -v_2^T \\ \vdots \\ -v_m^T \end{pmatrix} \right) $$
Definition
The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted $\text{Row } A$. Equivalently, it is the column space of A^T:

$$\text{Row } A = \text{Col } A^T.$$

It is a subspace of \mathbb{R}^n.

We showed before that if A has rows $v_1^T, v_2^T, \ldots, v_m^T$, then

$$\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul } A.$$

Hence we have shown:

Fact: $(\text{Row } A)^\perp = \text{Nul } A$.

Replacing A by A^T, and remembering $\text{Row } A^T = \text{Col } A$:

Fact: $(\text{Col } A)^\perp = \text{Nul } A^T$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: $(\text{Nul } A)^\perp = \text{Row } A$ and $\text{Col } A = (\text{Nul } A^T)^\perp$.

Even though $\text{Row}(A)$ lives in \mathbb{R}^n and $\text{Col}(A)$ lives in \mathbb{R}^m if A is an $m \times n$ matrix, both subspaces have the same dimension.

Theorem

If A is an $m \times n$ matrix, then $\dim(\text{Row } A) = \dim(\text{Col } A)$.
Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors \(v_1, v_2, \ldots, v_m \):

\[
\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul} \begin{pmatrix}
v_1^T \\
v_2^T \\
\vdots \\
v_m^T
\end{pmatrix}
\]

For any matrix \(A \):

\[
\text{Row } A = \text{Col } A^T
\]

and

\[
(\text{Row } A)^\perp = \text{Nul } A \quad \text{Row } A = (\text{Nul } A)^\perp
\]

\[
(\text{Col } A)^\perp = \text{Nul } A^T \quad \text{Col } A = (\text{Nul } A^T)^\perp
\]

For any other subspace \(W \), first find a basis \(v_1, \ldots, v_m \), then use the above trick to compute \(W^\perp = \text{Span}\{v_1, \ldots, v_m\}^\perp \).
Section 6.3

Orthogonal Projections (will finish in next set of slides)
Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

![Diagram showing a point x and a subspace W, with a vector $x - y$ orthogonal to W.]

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the orthogonal complement W^\perp.
Theorem
Every vector x in \mathbb{R}^n can be written as

$$x = x_W + x_{W\perp}$$

for unique vectors x_W in W and $x_{W\perp}$ in W^\perp.

The equation $x = x_W + x_{W\perp}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the **orthogonal projection** of x onto W.

The vector x_W is the closest vector to x on W.
[interactive 1] [interactive 2]
Theorem
Every vector \(x \) in \(\mathbb{R}^n \) can be written as
\[
x = x_W + x_{W\perp}
\]
for unique vectors \(x_W \) in \(W \) and \(x_{W\perp} \) in \(W^\perp \).

Why?
Uniqueness: suppose \(x = x_W + x_{W\perp} = x'_W + x'_{W\perp} \) for \(x_W, x'_W \) in \(W \) and \(x_{W\perp}, x'_{W\perp} \) in \(W^\perp \). Rewrite:
\[
x_W - x'_W = x'_{W\perp} - x_{W\perp}.
\]
The left side is in \(W \), and the right side is in \(W^\perp \), so they are both in \(W \cap W^\perp \). But the only vector that is perpendicular to itself is the zero vector! Hence
\[
0 = x_W - x'_W \implies x_W = x'_W
\]
\[
0 = x_{W\perp} - x'_{W\perp} \implies x_{W\perp} = x'_{W\perp}
\]
Existence: We will compute the orthogonal decomposition later using orthogonal projections.
Orthogonal Decomposition

Example

Let W be the xy-plane in \mathbb{R}^3. Then W^\perp is the z-axis.

Let $x = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, then $x_{W} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ and $x_{W^\perp} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$.

Let $x = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, then $x_{W} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ and $x_{W^\perp} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$.

This is just decomposing a vector into a “horizontal” component (in the xy-plane) and a “vertical” component (on the z-axis).
Problem: Given x and W, how do you compute the decomposition $x = x_W + x_{W\perp}$?

Observation: It is enough to compute x_W, because $x_{W\perp} = x - x_W$.

Orthogonal Decomposition Computation?
The A^TA Trick

Theorem (The A^TA Trick)

Let W be a subspace of \mathbb{R}^n, let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} v_1 & v_2 & \cdots & v_m \end{pmatrix}.$$

Then for any x in \mathbb{R}^n, the matrix equation

$$A^TAv = A^Tx$$ (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Recipe for Computing $x = x_W + x_{W^\perp}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^TAv = A^Tx$ (by row reducing).
- Then $x_W = Av$ and $x_{W^\perp} = x - x_W$.
Problem: Compute the orthogonal projection of a vector \(x = (x_1, x_2, x_3) \) in \(\mathbb{R}^3 \) onto the xy-plane.

First we need a basis for the xy-plane: let’s choose

\[
e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \Rightarrow \quad A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Then

\[
A^T A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = I_2 \quad \Rightarrow \quad A^T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.
\]

Then \(A^T A v = v \) and \(A^T x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \), so the only solution of \(A^T A v = A^T x \) is \(v = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \). Therefore,

\[
x_W = A v = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}.
\]
Problem: Let

\[
x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.
\]

Compute the distance from \(x \) to \(W \).

The distance from \(x \) to \(W \) is \(\| x_{W^\perp} \| \), so we need to compute the orthogonal projection. First we need a basis for \(W = \text{Nul} \left(\begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \right) \). This matrix is in RREF, so the parametric form of the solution set is

\[
x_1 = x_2 - x_3 \\
x_2 = x_2 \\
x_3 = x_3
\]

Hence we can take a basis to be

\[
\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \quad A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
Problem: Let

\[
x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.
\]

Compute the distance from \(x \) to \(W \).

We compute

\[
A^T A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \quad A^T x = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.
\]

To solve \(A^T Av = A^T x \) we form an augmented matrix and row reduce:

\[
\begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & 2 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 8/3 \\ 0 & 1 & 7/3 \end{pmatrix} \quad v = \frac{1}{3} \begin{pmatrix} 8 \\ 7 \end{pmatrix}.
\]

\[
x_W = Av = \frac{1}{3} \begin{pmatrix} 1 \\ 8 \\ 7 \end{pmatrix} \quad x_{W^\perp} = x - x_W = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}.
\]

The distance is

\[
\|x_{W^\perp}\| = \frac{1}{3} \sqrt{4 + 4 + 4} \approx 1.155.
\]
The $A^T A$ Trick

Proof

Theorem (The $A^T A$ Trick)

Let W be a subspace of \mathbb{R}^n, let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & \cdots & | \\ v_1 & v_2 & \cdots & v_m \end{pmatrix}.$$

Then for any x in \mathbb{R}^n, the matrix equation

$$A^T Av = A^T x \quad (\text{in the unknown vector } v)$$

is consistent, and $x_W = Av$ for any solution v.

Proof: Let $x = x_W + x_{W\perp}$. Then $x_{W\perp}$ is in $W^\perp = \text{Nul}(A^T)$, so $A^T x_{W\perp} = 0$. Hence

$$A^T x = A^T (x_W + x_{W\perp}) = A^T x_W + A^T x_{W\perp} = A^T x_W.$$

Since x_W is in $W = \text{Span}\{v_1, v_2, \ldots, v_m\}$, we can write

$$x_W = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m.$$

If $v = (c_1, c_2, \ldots, c_m)$ then $Av = x_W$, so

$$A^T x = A^T x_W = A^T Av.$$
Problem: Let \(L = \text{Span}\{u\} \) be a line in \(\mathbb{R}^n \) and let \(x \) be a vector in \(\mathbb{R}^n \). Compute \(x_L \).

We have to solve \(u^T u v = u^T x \), where \(u \) is an \(n \times 1 \) matrix. But \(u^T u = u \cdot u \) and \(u^T x = u \cdot x \) are scalars, so

\[
v = \frac{u \cdot x}{u \cdot u} \implies x_L = u v = \frac{u \cdot x}{u \cdot u} u.
\]

The projection of \(x \) onto a line \(L = \text{Span}\{u\} \) is

\[
x_L = \frac{u \cdot x}{u \cdot u} u \quad \text{and} \quad x_L^\perp = x - x_L.
\]
Orthogonal Projection onto a Line
Example

Problem: Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line L spanned by $u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, and find the distance from u to L.

$$x_L = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$x_{L\perp} = x - x_L = \frac{1}{13} \begin{pmatrix} -48 \\ 72 \end{pmatrix}.$$

The distance from x to L is

$$\|x_{L\perp}\| = \frac{1}{13} \sqrt{48^2 + 72^2} \approx 6.656.$$
Summary

Let W be a subspace of \mathbb{R}^n.

- The **orthogonal complement** W^\perp is the set of all vectors orthogonal to everything in W.
- We have $(W^\perp)^\perp = W$ and $\dim W + \dim W^\perp = n$.
- $\text{Row } A = \text{Col } A^T$, $(\text{Row } A)^\perp = \text{Nul } A$, $\text{Row } A = (\text{Nul } A)^\perp$, $(\text{Col } A)^\perp = \text{Nul } A^T$, $\text{Col } A = (\text{Nul } A^T)^\perp$.
- **Orthogonal decomposition**: any vector x in \mathbb{R}^n can be written in a unique way as $x = x_W + x_{W^\perp}$ for x_W in W and x_{W^\perp} in W^\perp. The vector x_W is the **orthogonal projection** of x onto W.
- The vector x_W is the **closest point to x in W**: it is the **best approximation**.
- The **distance** from x to W is $\|x_{W^\perp}\|$.
- If $W = \text{Col } A$ then to compute x_W, solve the equation $A^TAv = A^Tx$; then $x_W = Av$.
- If $W = L = \text{Span}\{u\}$ is a line then $x_L = \frac{u \cdot x}{u \cdot u} u$.