Supplemental problems: Chapter 4, Determinants

1. If A is an $n \times n$ matrix, is it necessarily true that $\det(-A) = -\det(A)$? Justify your answer.

2. Let A be an $n \times n$ matrix.
 a) Using cofactor expansion, explain why $\det(A) = 0$ if A has a row or a column of zeros.
 b) Using cofactor expansion, explain why $\det(A) = 0$ if A has adjacent identical columns.

3. Find the volume of the parallelepiped in \mathbb{R}^4 naturally determined by the vectors
 \[
 \begin{bmatrix}
 4 \\
 1 \\
 3 \\
 8
 \end{bmatrix}, \quad
 \begin{bmatrix}
 0 \\
 7 \\
 0 \\
 3
 \end{bmatrix}, \quad
 \begin{bmatrix}
 0 \\
 2 \\
 1 \\
 1
 \end{bmatrix}, \quad
 \begin{bmatrix}
 5 \\
 -5 \\
 0 \\
 7
 \end{bmatrix}.
 \]

4. Let $A = \begin{pmatrix} -1 & 1 \\ 1 & 7 \end{pmatrix}$, and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = Ax$. Find the area of $T(S)$, if S is a triangle in \mathbb{R}^2 with area 2.

5. Let
 \[
 A = \begin{pmatrix}
 7 & 1 & 4 & 1 \\
 -1 & 0 & 0 & 6 \\
 9 & 0 & 2 & 3 \\
 0 & 0 & 0 & -1
 \end{pmatrix} \quad \text{and} \quad
 B = \begin{pmatrix}
 0 & 1 & 5 & 4 \\
 1 & -1 & -3 & 0 \\
 -1 & 0 & 5 & 4 \\
 3 & -3 & -2 & 5
 \end{pmatrix}
 \]
 a) Compute $\det(A)$.
 b) Compute $\det(B)$.
 c) Compute $\det(AB)$.
 d) Compute $\det(A^2B^{-1}AB^2)$.

6. If A is a 3×3 matrix and $\det(A) = 1$, what is $\det(-2A)$?

7. a) Is there a real 2×2 matrix A that satisfies $A^4 = -I_2$? Either write such an A, or show that no such A exists.
 (hint: think geometrically! The matrix $-I_2$ represents rotation by π radians).
 b) Is there a real 3×3 matrix A that satisfies $A^4 = -I_3$? Either write such an A, or show that no such A exists.