Section 2.6

Subspaces
Today we will discuss **subspaces** of \mathbb{R}^n.

A subspace turns out to be the same as a span, except we don’t know *which* vectors it’s the span of.

This arises naturally when you have, say, a plane through the origin in \mathbb{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.

$$x + 3y + z = 0$$
Definition of Subspace

Definition
A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V. **“not empty”**
2. If u and v are in V, then $u + v$ is also in V. **“closed under addition”**
3. If u is in V and c is in \mathbb{R}, then cu is in V. **“closed under \times scalars”**

Fast-forward

Every subspace is a span, and every span is a subspace.

A subspace is a span of some vectors, but you haven’t computed what those vectors are yet.
Definition of Subspace

Definition
A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V. “not empty”
2. If u and v are in V, then $u + v$ is also in V. “closed under addition”
3. If u is in V and c is in \mathbb{R}, then cu is in V. “closed under \times scalars”

What does this mean?

- If v is in V, then all scalar multiples of v are in V by (3). In other words, the line through any nonzero vector in V is also in V.
- If u, v are in V, then cu and dv are in V for any scalars c, d by (3). So $cu + dv$ is in V by (2). So $\text{Span}\{u, v\}$ is contained in V.
- Likewise, if v_1, v_2, \ldots, v_n are all in V, then $\text{Span}\{v_1, v_2, \ldots, v_n\}$ is contained in V: a subspace contains the span of any set of vectors in it.

If you pick enough vectors in V, eventually their span will fill up V, so:

A subspace is a span of some set of vectors in it.
Examples

Example
A line L through the origin is a subspace: L contains zero and is easily seen to be closed under addition and scalar multiplication.

Example
A plane P through the origin is a subspace: P contains zero; the sum of two vectors in P is also in P; and any scalar multiple of a vector in P is also in P.

Example
All of \mathbb{R}^n: this contains 0, and is closed under addition and scalar multiplication.

Example
The subset $\{0\}$: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)
A **subset** of \(\mathbb{R}^n \) is any collection of vectors in \(\mathbb{R}^n \) whatsoever. For example, the unit circle

\[
C = \{(x, y) \text{ in } \mathbb{R}^2 \mid x^2 + y^2 = 1\}
\]

is a subset of \(\mathbb{R}^2 \), but it is not a subspace.

All of the following non-examples on the next slide are still subsets.

A **subspace** is a special kind of subset, that satisfies the three defining properties.
Non-Example

A line L (or any other set) that doesn’t contain the origin is not a subspace. Fails: **1**.

Non-Example

A circle C is not a subspace. Fails: **1,2,3**. Think: a circle isn't a “linear space.”

Non-Example

The first quadrant in \mathbb{R}^2 is not a subspace. Fails: **3** only.

Non-Example

A line union a plane in \mathbb{R}^3 is not a subspace. Fails: **2** only.
Subspaces are Spans, and Spans are Subspaces

Theorem
Any Span \{v_1, v_2, \ldots, v_p\} is a subspace.

Every subspace is a span, and every span is a subspace.

Definition
If \(V = \text{Span}\{v_1, v_2, \ldots, v_p\} \), we say that \(V \) is the subspace generated by or spanned by the vectors \(v_1, v_2, \ldots, v_p \). We call \(\{v_1, v_2, \ldots, v_p\} \) a spanning set for \(V \).

Check:
1. \(0 = 0v_1 + 0v_2 + \cdots + 0v_p \) is in the span.
2. If, say, \(u = 3v_1 + 4v_2 \) and \(v = -v_1 - 2v_2 \), then
 \[
 u + v = 3v_1 + 4v_2 - v_1 - 2v_2 = 2v_1 + 2v_2
 \]
 is also in the span.
3. Similarly, if \(u \) is in the span, then so is \(cu \) for any scalar \(c \).
Which of the following are subspaces?

A. The empty set \{\}.
B. The solution set to a homogeneous system of linear equations.
C. The solution set to an inhomogeneous system of linear equations.
D. The set of all vectors in \(\mathbb{R}^n \) with rational (fraction) coordinates.

For the ones which are not subspaces, which property(ies) do they not satisfy?

A. This is not a subspace: it does not contain the zero vector.
B. This is a subspace: the solution set is a span, produced by finding the parametric vector form of the solution.
C. This is not a subspace: it does not contain 0.
D. This is not a subspace: it is not closed under multiplication by scalars (e.g. by \(\pi \)).
Subspaces
Verification

Let \(V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid ab = 0 \right\} \). Let’s check if \(V \) is a subspace or not.

1. Does \(V \) contain the zero vector? \(\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies ab = 0 \) ✔

3. Is \(V \) closed under scalar multiplication?
 - Let \(\begin{pmatrix} a \\ b \end{pmatrix} \) be (an unknown vector) in \(V \).
 - This means: \(a \) and \(b \) are numbers such that \(ab = 0 \).
 - Let \(c \) be a scalar. Is \(c\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ca \\ cb \end{pmatrix} \) in \(V \)?
 - This means: \((ca)(cb) = 0\).
 - Well, \((ca)(cb) = c^2(ab) = c^2(0) = 0\) ✔

2. Is \(V \) closed under addition?
 - Let \(\begin{pmatrix} a \\ b \end{pmatrix} \) and \(\begin{pmatrix} a' \\ b' \end{pmatrix} \) be (unknown vectors) in \(V \).
 - This means: \(ab = 0 \) and \(a'b' = 0 \).
 - Is \(\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a+a' \\ b+b' \end{pmatrix} \) in \(V \)?
 - This means: \((a+a')(b+b') = 0\).
 - This is not true for all such \(a, a', b, b' \): for instance, \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) are in \(V \), but their sum \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is not in \(V \), because \(1 \cdot 1 \neq 0 \). ❌

We conclude that \(V \) is not a subspace. A picture is above. (It doesn’t look like a span.)
Column Space and Null Space

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- The **column space** of A is the subspace of \mathbb{R}^m spanned by the columns of A. It is written $\text{Col } A$.

- The **null space** of A is the set of all solutions of the homogeneous equation $Ax = 0$:
 \[\text{Nul } A = \{ x \in \mathbb{R}^n \mid Ax = 0 \} . \]
 This is a subspace of \mathbb{R}^n.

The column space is defined as a span, so we know it is a subspace.

Check that the null space is a subspace:

1. 0 is in Nul A because $A0 = 0$.

2. If u and v are in Nul A, then $Au = 0$ and $Av = 0$. Hence
 \[A(u + v) = Au + Av = 0 , \]
 so $u + v$ is in Nul A.

3. If u is in Nul A, then $Au = 0$. For any scalar c, $A(cu) = cAu = 0$. So cu is in Nul A.
Column Space and Null Space

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \).

Let’s compute the column space:

\[
\text{Col} \ A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.
\]

This is a line in \(\mathbb{R}^3 \).

Let’s compute the null space:

The reduced row echelon form of \(A \) is \(\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \).

This gives the equation \(x + y = 0 \), or

\[
x = -y \quad \text{parametric vector form} \quad \begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
\]

Hence the null space is \(\text{Span}\{\begin{pmatrix} -1 \\ 1 \end{pmatrix}\} \), a line in \(\mathbb{R}^2 \).
The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to $Ax = 0$. It is a subspace, so it is a span.

Question

How to find vectors that span the null space?

Answer: Parametric vector form! We know that the solution set to $Ax = 0$ has a parametric form that looks like

$$
\begin{pmatrix}
1 \\
2 \\
1 \\
0
\end{pmatrix} + \lambda \begin{pmatrix}
-2 \\
3 \\
0 \\
1
\end{pmatrix}
$$

if, say, x_3 and x_4 are the free variables. So

$$\text{Nul } A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §2.4 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.
A **subspace** is the same as a span of some number of vectors, but we haven’t computed the vectors yet.

To any matrix is associated two subspaces, the **column space** and the **null space**:

- Col $A = \text{the span of the columns of } A$
- Nul $A = \text{the solution set of } Ax = 0$.

How do you check if a subset is a subspace?

- Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we’ll learn about later (eigenspaces, ...)?

If so, then it’s automatically a subspace.

If all else fails:

- Can you verify directly that it satisfies the three defining properties?