Math 1553 Conceptual question list §§2.6-3.6

Worksheet 5 (2.6-3.2)

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
 a) If \(A \) is a \(3 \times 10 \) matrix with 2 pivots in its RREF, then \(\dim(\text{Nul}A) = 8 \) and \(\text{rank}(A) = 2 \).

 TRUE FALSE

 b) If \(A \) is an \(m \times n \) matrix and \(Ax = 0 \) has only the trivial solution, then the transformation \(T(x) = Ax \) is onto.

 TRUE FALSE

 c) If \(\{a, b, c\} \) is a basis of a linear space \(V \), then \(\{a, a + b, b + c\} \) is a basis of \(V \) as well.

 TRUE FALSE

2. Write a matrix \(A \) so that \(\text{Col}(A) \) is the solid blue line and \(\text{Nul}(A) \) is the dotted red line drawn below.
supplemental (2.6-3.2)

1. Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.
 a) If A is a 3×100 matrix of rank 2, then $\dim(\operatorname{Nul}A) = 97$.
 TRUE FALSE
 b) If A is an $m \times n$ matrix and $Ax = 0$ has only the trivial solution, then the columns of A form a basis for \mathbb{R}^m.
 TRUE FALSE
 c) The set $V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid x - 4z = 0 \right\}$ is a subspace of \mathbb{R}^4.
 TRUE FALSE

2. Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.
 a) If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace V of \mathbb{R}^n, then $\{v_1, v_2, v_3\}$ is a linearly independent set.
 b) The solution set of a consistent matrix equation $Ax = b$ is a subspace.
 c) A translate of a span is a subspace.

3. True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 a) There exists a 3×5 matrix with rank 4.
 b) If A is an 9×4 matrix with a pivot in each column, then
 $$\operatorname{Nul}A = \{0\}.$$
 c) There exists a 4×7 matrix A such that nullity $A = 5$.
 d) If $\{v_1, v_2, \ldots, v_n\}$ is a basis for \mathbb{R}^4, then $n = 4$.

4. a) True or false: If A is an $m \times n$ matrix and $\operatorname{Nul}(A) = \mathbb{R}^n$, then $\operatorname{Col}(A) = \{0\}$.
 b) Give an example of a 2×2 matrix whose column space is the same as its null space.
 c) True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for $Ax = 0$ has dimension 5.

5. Fill in the blanks: If A is a 7×6 matrix and the solution set for $Ax = 0$ is a plane, then the column space of A is a _______-dimensional subspace of \mathbb{R}^\square.
6. True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
 a) The matrix transformation \(T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \) performs reflection across the \(x \)-axis in \(\mathbb{R}^2 \). TRUE FALSE
 b) The matrix transformation \(T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \) performs rotation counter-clockwise by 90° in \(\mathbb{R}^2 \). TRUE FALSE

7. Let \(A \) be a \(3 \times 4 \) matrix with column vectors \(v_1, v_2, v_3, v_4 \), and suppose \(v_2 = 2v_1 - 3v_4 \). Consider the matrix transformation \(T(x) = Ax \).
 a) Is it possible that \(T \) is one-to-one? If yes, justify why. If no, find distinct vectors \(v \) and \(w \) so that \(T(v) = T(w) \).
 b) Is it possible that \(T \) is onto? Justify your answer.

8. Answer each question.
 a) Suppose \(S : \mathbb{R}^3 \to \mathbb{R}^2 \) is the matrix transformation \(S(x) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} x \).
 Is \(S \) one-to-one? YES NO
 Is \(S \) onto? YES NO
 b) Suppose \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) is given by \(T(x, y) = (x - y, x - y) \).
 Is \(T \) one-to-one? YES NO
 Is \(T \) onto? YES NO
 c) Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a one-to-one matrix transformation. Which one of the following must be true? (circle one)
 \(m = n \) \(m < n \) \(m \leq n \) \(m > n \) \(m \geq n \)

9. Which of the following transformations are onto? Circle all that apply.
 a) \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) that rotates counterclockwise by \(\frac{\pi}{12} \) radians.
 b) The transformation \(T(x) = Ax \), where \(A \) is a \(4 \times 3 \) matrix with three pivots.
 c) \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) that reflects across the \(yz \)-plane.
Worksheet 6 (3.3-3.4)

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
 a) $A - B$
 b) AB
 c) $A^T B$
 d) $B^T A$
 e) A^2

2. A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
 a) Take any vector x in \mathbb{R}^n, then ABx must be in:
 \[\text{Col}(A), \text{Nul}(A), \text{Col}(B), \text{Nul}(B) \]
 b) Take any vector x in \mathbb{R}^n, then BAx must be in:
 \[\text{Col}(A), \text{Nul}(A), \text{Col}(B), \text{Nul}(B) \]
 c) If $m > n$, then columns of AB could be linearly independent, dependent
 d) If $m > n$, then columns of BA could be linearly independent, dependent
 e) If $m > n$ and $Ax = 0$ has nontrivial solutions, then columns of BA could be linearly independent, dependent
Supplemental (3.3-3.4)

1. Circle T if the statement is always true, and circle F otherwise.

a) T F If \(T : \mathbb{R}^n \to \mathbb{R}^n \) is linear and \(T(e_1) = T(e_2) \), then the homogeneous equation \(T(x) = 0 \) has infinitely many solutions.

b) T F If \(T : \mathbb{R}^n \to \mathbb{R}^n \) is a one-to-one linear transformation and \(m \neq n \), then \(T \) must not be onto.

2. Consider \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) given by
 \[
 T(x, y, z) = (x, x + z, 3x - 4y + z, x).

 Is \(T \) one-to-one? Justify your answer.

3. In each case, determine whether \(T \) is linear. Briefly justify.

a) \(T(x_1, x_2) = (x_1 - x_2, x_1 + x_2, 1) \).

b) \(T(x, y) = (y, x^{1/3}) \).

c) \(T(x, y, z) = 2x - 5z \).

4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.

a) If \(A \) and \(B \) are matrices and the products \(AB \) and \(BA \) are both defined, then \(A \) and \(B \) must be square matrices with the same number of rows and columns.

b) If \(A, B, \) and \(C \) are nonzero \(2 \times 2 \) matrices satisfying \(BA = CA \), then \(B = C \).

c) Suppose \(A \) is an \(4 \times 3 \) matrix whose associated transformation \(T(x) = Ax \) is not one-to-one. Then there must be a \(3 \times 3 \) matrix \(B \) which is not the zero matrix and satisfies \(AB = 0 \).

d) Suppose \(T : \mathbb{R}^6 \to \mathbb{R}^m \) and \(U : \mathbb{R}^m \to \mathbb{R}^p \) are one-to-one linear transformations. Then \(U \circ T \) is one-to-one. (What if \(U \) and \(T \) are not necessarily linear?)

5. In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.

a) A \(3 \times 3 \) matrix \(P \), which is not the identity matrix or the zero matrix, and satisfies \(P^2 = P \).

b) A \(2 \times 2 \) matrix \(A \) satisfying \(A^2 = I \).

c) A \(2 \times 2 \) matrix \(A \) satisfying \(A^3 = -I \).
Worksheet 7 (3.5-3.6)

1. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
 a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of AB is $A^{-1}B^{-1}$.

 b) If A is an $n \times n$ matrix and the equation $Ax = b$ has at least one solution for each b in \mathbb{R}^n, then the solution is unique for each b in \mathbb{R}^n.

 c) If A is an $n \times n$ matrix and the equation $Ax = b$ has at most one solution for each b in \mathbb{R}^n, then the solution must be unique for each b in \mathbb{R}^n.

 d) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1} = A^{-1} + B^{-1}$.

 e) If A and B are $n \times n$ matrices and $ABx = 0$ has a unique solution, then $Ax = 0$ has a unique solution.

 f) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x) = ABx$ has domain \mathbb{R}^3 and codomain \mathbb{R}^2.

 g) Suppose A is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of A. Then A must be invertible.