Supplemental problems: §§2.6, 2.7, 2.9

1. Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.

a) If A is a 3×100 matrix of rank 2, then $\dim(\text{Nul}A) = 97$.

 TRUE **FALSE**

b) If A is an $m \times n$ matrix and $Ax = 0$ has only the trivial solution, then the columns of A form a basis for \mathbb{R}^m.

 TRUE **FALSE**

c) The set $V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid x - 4z = 0 \right\}$ is a subspace of \mathbb{R}^4.

 TRUE **FALSE**

2. Write a matrix A so that $\text{Col}A = \text{Span}\left\{ \begin{pmatrix} 1 \\ -3 \\ 1 \\ 1 \end{pmatrix} \right\}$ and $\text{Nul}A$ is the xz-plane.

3. Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.

a) If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace V of \mathbb{R}^n, then $\{v_1, v_2, v_3\}$ is a linearly independent set.

 T **F**

b) The solution set of a consistent matrix equation $Ax = b$ is a subspace.

 T **F**

c) A translate of a span is a subspace.

 T **F**

4. True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.

a) There exists a 3×5 matrix with rank 4.

 T

b) If A is an 9×4 matrix with a pivot in each column, then $\text{Nul}A = \{0\}$.

 T

c) There exists a 4×7 matrix A such that nullity $A = 5$.

 T

d) If $\{v_1, v_2, \ldots, v_n\}$ is a basis for \mathbb{R}^4, then $n = 4$.

 T

5. Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$
6. Find a basis for the subspace V of \mathbb{R}^4 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid x + 2y - 3z + w = 0 \right\}.$$

7.

a) True or false: If A is an $m \times n$ matrix and $\text{Nul}(A) = \mathbb{R}^n$, then $\text{Col}(A) = \{0\}$.

b) Give an example of a 2×2 matrix whose column space is the same as its null space.

c) True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for $Ax = 0$ has dimension 5.

8. Suppose V is a 3-dimensional subspace of \mathbb{R}^5 containing $\begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 9 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Is $\left\{ \begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ a basis for V? Justify your answer.

9.

a) Write a 2×2 matrix A with rank 2, and draw pictures of $\text{Nul} A$ and $\text{Col} A$.

$$A = \begin{pmatrix} _ & _ \\ _ & _ \end{pmatrix} \quad \text{Nul} A = \quad \text{Col} A =$$

b) Write a 2×2 matrix B with rank 1, and draw pictures of $\text{Nul} B$ and $\text{Col} B$.

$$B = \begin{pmatrix} _ & _ \\ _ & _ \end{pmatrix} \quad \text{Nul} B = \quad \text{Col} B =$$
c) Write a 2×2 matrix C with rank 0, and draw pictures of $\text{Nul } C$ and $\text{Col } C$.

$$C = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$\text{Nul } C =$

$\text{Col } C =$

(In the grids, the dot is the origin.)