
IMPORTANT DEFINITIONS AND THEOREMS
REFERENCE SHEET

This is a (not quite comprehensive) list of definitions and theorems given in Math 1553.
Pay particular attention to the ones in red.

For each definition, find an example of something that satisfies the re-
quirements of the definition, and an example of something that does
not. For each theorem, find an example of something that satisfies the
hypotheses of the theorem, and an example of something that does not
satisfy the conclusions (or the hypotheses, of course) of the theorem.
This is great conceptual practice.

Study Tip

CHAPTER 1

SECTION 1.1.

Definition. Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

This is the number line when n= 1, the x y-plane when n= 2, and space when n= 3.

Definition. A solution to a system of linear equations is a list of numbers making all of
the equations true.

A solution of a system of equations in n variables is a point in Rn.

Definition. The elementary row operations are the following matrix operations:
• Multiply all entries in a row by a nonzero number (scale).
• Add (a multiple of) each entry of one row to the corresponding entry in another

(row replacement).
• Swap two rows.

Definition. Two matrices are called row equivalent if one can be obtained from the
other by doing some number of elementary row operations.

Definition. A system of equations is called inconsistent if it has no solution. It is con-
sistent otherwise.

SECTION 1.2.

Definition. A matrix is in row echelon form if
(1) All zero rows are at the bottom.
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2 DEFINITIONS AND THEOREMS

(2) Each leading nonzero entry of a row is to the right of the leading entry of the row
above.

(3) Below a leading entry of a row, all entries are zero.

Definition. A pivot is the first nonzero entry of a row of a matrix in row echelon form.

Definition. A matrix is in reduced row echelon form if it is in row echelon form, and
in addition,

(4) The pivot in each nonzero row is equal to 1.
(5) Each pivot is the only nonzero entry in its column.

Theorem. Every matrix is row equivalent to one and only one matrix in reduced row echelon
form.

Review. Row reduction algorithm.

SECTION 1.3.

Definition. Consider a consistent linear system of equations in the variables x1, . . . , xn.
Let A be the reduced row echelon form of the matrix for this system. We say that x i is a
free variable if its corresponding column in A is not a pivot column.

Definition. The parametric form for the general solution to a system of equations is a
system of equations for the non-free variables in terms of the free variables. For instance,
if x2 and x4 are free,

x1 = 2− 3x4 x3 = −1− 4x4

is a parametric form.

Theorem. Every solution to a consistent linear system is obtained by substituting (unique)
values for the free variables in the parametric form.

Fact. There are three possibilities for the solution set of a linear system with augmented
matrix A:

(1) The system is inconsistent: it has zero solutions, and the last column of A is a pivot
column.

(2) The system has a unique solution: every column of A except the last is a pivot column.
(3) The system has infinitely many solutions: the last column isn’t a pivot column, and

some other column isn’t either. These last columns correspond to free variables.

CHAPTER 2

SECTION 2.1.

Definition. A vector is an arrow with a given length and direction.

Definition. A scalar is another name for a real number (to distinguish it from a vector).

Review. Parallelogram law for vector addition, geometric interpretation of vector sub-
traction and scalar multiplication.
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Definition. A linear combination of vectors v1, v2, . . . , vn is a vector of the form

c1v1 + c2v2 + · · ·+ cnvn

where c1, c2, . . . , cn are scalars, called the weights or coefficients of the linear combina-
tion.

SECTION 2.2.

Definition. A vector equation is an equation involving vectors. (It is equivalent to a list
of equations involving only scalars.)

Definition. The span of a set of vectors v1, v2, . . . , vn is the set of all linear combinations
of these vectors:

Span{v1, . . . , vp}=
�

x1v1 + · · ·+ xpvp

�

� x1, . . . , xp in R
	

.

Review. Pictures of spans.

Theorem. The following are equivalent:
(1) A vector b is in the span of v1, v2, . . . , vp.
(2) The vector equation

x1v1 + x2v2 + · · ·+ xp

has a solution.
(3) The linear system with augmented matrix

 | | | |
v1 v2 · · · vp b
| | | |

!

is consistent.

Review. Pictures of consistent and inconsistent vector equations.

SECTION 2.3.

Definition. The product of an m× n matrix A with a vector x in Rn is the linear combi-
nation

Ax =

 | | |
v1 v2 · · · vn
| | |

!









x1
x2
...

xn









:= x1v1 + x2v2 + · · ·+ xnvn.

The output is a vector in Rm.

The product can also be computed by multiplying rows:

Ax =









— r1 —
— r2 —

...
— rm —









x =









r1 x
r2 x

...
rm x









.
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Definition. A matrix equation is a vector equation involving a product of a matrix with
a vector.

We now have four equivalent ways of writing (and thinking about) linear systems:

(1) As a system of equations

2x1 + 3x2 = 7
x1 − x2 = 5

(2) As an augmented matrix:
�

2 3 7
1 −1 5

�

(3) As a vector equation (x1v1 + · · ·+ xnvn = b):

x1

�

2
1

�

+ x2

�

3
−1

�

=
�

7
5

�

(4) As a matrix equation (Ax = b):
�

2 3
1 −1

��

x1
x2

�

=
�

7
5

�

In particular, all four have the same solution set.

Theorem. Ax = b has a solution if and only if b is in the span of the columns of A.

Theorem. Let A be an m× n (non-augmented) matrix. The following are equivalent

(1) Ax = b has a solution for all b in Rm.
(2) The span of the columns of A is all of Rm.
(3) A has a pivot in each row.

SECTION 2.4.

Definition. A system of linear equations of the form Ax = 0 is called homogeneous.

Definition. A system of linear equations of the form Ax = b for b 6= 0 is called inhomo-
geneous or non-homogeneous.

Definition. The trivial solution to a homogeneous equation is the solution x = 0: A0=
0.

Theorem. Let A be a matrix. The following are equivalent:

(1) Ax = 0 has a nontrivial solution.
(2) There is a free variable.
(3) A has a column with no pivot.

Theorem. The solution set of a homogeneous equation Ax = 0 is a span. You can find a
spanning set by computing the parametric vector form.



DEFINITIONS AND THEOREMS 5

Definition. The parametric vector form for the general solution to a system of equations
Ax = b is a vector equation expressing all variables in terms of the free variables. For
instance, if x2 and x4 are free,

x =







x1
x2
x3
x4






=







2
0
−1
0






+ x2







0
1
0
0






+ x4







−3
0
−4
1







is a parametric vector form. The constant vector (2,0,−1, 0) is a specific solution or
particular solution to Ax = b.

Theorem. The solution set of a linear system Ax = b is a translate of the solution set of
Ax = 0 by a specific solution.

SECTION 2.5.

Definition. A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · ·= xp = 0.

Definition. A set of vectors {v1, v2, . . . , vp} in Rn is linearly dependent if the vector equa-
tion

x1v1 + x2v2 + · · ·+ xpvp = 0

has a nontrivial solution (not all x i are zero). Such a solution is a linear dependence
relation.

Theorem. A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.

Fact. Say v1, v2, . . . , vn are in Rm. If n> m then {v1, v2, . . . , vn} is linearly dependent.

Fact. If one of v1, v2, . . . , vn is zero, then {v1, v2, . . . , vn} is linearly dependent.

Theorem. Let v1, v2, . . . , vn be vectors in Rm, and let A be the m× n matrix with columns
v1, v2, . . . , vn. The following are equivalent:

(1) The set {v1, v2, . . . , vn} is linearly independent.
(2) No one vector is in the span of the others.
(3) For every j between 1 and n, v j is not in Span{v1, v2, . . . , v j−1}.
(4) Ax = 0 only has the trivial solution.
(5) A has a pivot in every column.

Review. Pictures of linear dependence and independence.
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SECTION 2.6.

Definition. A subspace of Rn is a subset V of Rn satisfying:

(1) The zero vector is in V .
(2) If u and v are in V , then u+ v is also in V .
(3) If u is in V and c is in R, then cu is in V .

Definition. If V = Span{v1, v2, . . . , vn}, we say that V is the subspace generated by or
spanned by the vectors v1, v2, . . . , vn.

Theorem. A subspace is a span, and a span is a subspace.

Definition. The column space of a matrix A is the subspace spanned by the columns of
A. It is written Col A.

Definition. The null space of A is the set of all solutions of the homogeneous equation
Ax = 0:

Nul A=
�

x | Ax = 0
	

.

Example. The following are the most important examples of subspaces in this class (some
won’t appear until later):

• Any Span{v1, v2, . . . , vm}.
• The column space of a matrix: Col A= Span{columns of A}.
• The range of a linear transformation (same as above).
• The null space of a matrix: Nul A=

�

x | Ax = 0
	

.
• The row space of a matrix: Row A= Span{rows of A}.
• The λ-eigenspace of a matrix, where λ is an eigenvalue.
• The orthogonal complement W⊥ of a subspace W .
• The zero subspace {0}.
• All of Rn.

SECTION 2.7.

Definition. Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
V such that:

(1) V = Span{v1, v2, . . . , vm}, and
(2) {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dim V .

Theorem. Every basis for a gives subspace has the same number of vectors in it.

Fact. The vectors in the parametric vector form of the general solution to Ax = 0 always
form a basis for Nul A.

Fact. The pivot columns of A always form a basis for Col A.
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SECTION 2.9.

Definition. The rank of a matrix A, written rank A, is the dimension of the column space
Col A.

Rank Theorem. If A is an m× n matrix, then

rank A+ dimNul A= n= the number of columns of A.

Basis Theorem. Let V be a subspace of dimension m. Then:
• Any m linearly independent vectors in V form a basis for V .
• Any m vectors that span V form a basis for V .

CHAPTER 3

SECTION 3.1.

Definition. A transformation (or function or map) from Rn to Rm is a rule T that assigns
to each vector x in Rn a vector T (x) in Rm.

• Rn is called the domain of T .
• Rm is called the codomain of T .
• For x in Rn, the vector T (x) in Rm is the image of x under T .

Notation: x 7→ T (x).
• The set of all images {T (x) | x in Rn} is the range of T .

Notation. T : Rn −→ Rm means T is a transformation from Rn to Rm.

Definition. Let A be an m× n matrix. The matrix transformation associated to A is the
transformation

T : Rn −→ Rm defined by T (x) = Ax .
• The domain is Rn, where n is the number of columns of A.
• The codomain is Rm, where m is the number of rows of A.
• The range is the span of the columns of A.

Review. Geometric transformations: projection, reflection, rotation, dilation, shear.

SECTION 3.2.

Definition. A transformation T : Rn → Rm is onto (or surjective) if the range of T is
equal to Rm (its codomain). In other words, each b in Rm is the image of at least one x
in Rn.

Theorem. Let T : Rn → Rm be a linear transformation with matrix A. Then the following
are equivalent:

• T is onto
• T (x) = b has a solution for every b in Rm

• Ax = b is consistent for every b in Rm

• The columns of A span Rm

• A has a pivot in every row.
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Definition. A transformation T : Rn→ Rm is one-to-one (or into, or injective) if differ-
ent vectors in Rn map to different vectors in Rm. In other words, each b in Rm is the
image of at most one x in Rn.

Theorem. Let T : Rn → Rm be a linear transformation with matrix A. Then the following
are equivalent:

• T is one-to-one
• T (x) = b has one or zero solutions for every b in Rm

• Ax = b has a unique solution or is inconsistent for every b in Rm

• Ax = 0 has a unique solution
• The columns of A are linearly independent
• A has a pivot in every column.

SECTION 3.3.

Definition. A linear transformation is a transformation T satisfying

T (u+ v) = T (u) + T (v) and T (cv) = cT (v)

for all vectors u, v and all scalars c.

Definition. The unit coordinate vectors in Rn are

e1 =













1
0
...
0
0













, e2 =













0
1
...
0
0













, . . . , en−1 =













0
0
...
1
0













, en =













0
0
...
0
1













.

Fact. If A is a matrix, then Aei is the ith column of A.

Definition. Let T : Rn→ Rm be a linear transformation. The standard matrix for T is
 | | |

T (e1) T (e2) · · · T (en)
| | |

!

.

Theorem. If T is a linear transformation, then it is the matrix transformation associated
to its standard matrix.

SECTION 3.4.

Definition. The i jth entry of a matrix A is the entry in the ith row and jth column.
Notation: ai j.

Definition. The entries a11, a22, a33, . . . are the diagonal entries; they form the main
diagonal of the matrix.

Definition. A diagonal matrix is a square matrix whose only nonzero entries are on the
main diagonal.
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Definition. The n× n identity matrix In is the diagonal matrix with all diagonal entries
equal to 1. It has the property that InA= A for any n×m matrix A.

Definition. The zero matrix (of size m× n) is the m× n matrix 0 with all zero entries.

Definition. The transpose of an m× n matrix A is the n×m matrix AT whose rows are
the columns of A. In other words, the i j entry of AT is a ji.

Definition. The product of an m×n matrix A with an n× p matrix B is the m× p matrix

AB =

 | | |
Av1 Av2 · · · Avp
| | |

!

,

where v1, v2, . . . , vp are the columns of B.

Fact. Suppose A has is an m× n matrix, and that the other matrices below have the right
size to make multiplication work. Then:

A(BC) = (AB)C A(B + C) = AB + AC
(B + C)A = BA+ CA c(AB) = (cA)B

c(AB) = A(cB) InA = A
AIm = A

Fact. If A, B, and C are matrices, then:
(1) AB is usually not equal to BA.
(2) AB = AC does not imply B = C.
(3) AB = 0 does not imply A= 0 or B = 0.

Definition. Let T : Rn → Rm and U : Rp → Rn be transformations. The composition is
the transformation

T ◦ U : Rp→ Rm defined by T ◦ U(x) = T (U(x)).

Theorem. Let T : Rn → Rm and U : Rm → Rp be linear transformations with matrices A
and B, respectively. Then the matrix for T ◦ U is AB.

SECTION 3.5.

Definition. A square matrix A is invertible (or nonsingular) if there is a matrix B of the
same size, such that

AB = In and BA= In.
In this case we call B the inverse of A, and we write A−1 = B.

Theorem. If A is invertible, then Ax = b has exactly one solution for every b, namely:

x = A−1 b.

Fact. Suppose that A and B are invertible n× n matrices.
(1) A−1 is invertible and its inverse is (A−1)−1 = A.
(2) AB is invertible and its inverse is (AB)−1 = B−1A−1.
(3) AT is invertible and (AT )−1 = (A−1)T .
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Theorem. Let A be an n× n matrix. Here’s how to compute A−1.
(1) Row reduce the augmented matrix (A | In ).
(2) If the result has the form ( In | B ), then A is invertible and B = A−1.
(3) Otherwise, A is not invertible.

Theorem. An n× n matrix A is invertible if and only if it is row equivalent to In. In this
case, the sequence of row operations taking A to In also takes In to A−1.

Definition. The determinant of a 2× 2 matrix A=
�

a b
c d

�

is

det(A) = det
�

a b
c d

�

= ad − bc.

Fact. If A is a 2× 2 matrix, then A is invertible if and only if det(A) 6= 0. In this case,

A−1 =
1

det(A)

�

d −b
−c a

�

.

Definition. A transformation T : Rn → Rn is invertible if there exists another transfor-
mation U : Rn→ Rn such that

T ◦ U(x) = x and U ◦ T (x) = x

for all x in Rn. In this case we say U is the inverse of T , and we write U = T−1.

Fact. A transformation T is invertible if and only if it is both one-to-one and onto.

Theorem. If T is an invertible linear transformation with matrix A, then T−1 is an invertible
linear transformation with matrix A−1.

I’ll keep all of the conditions of the IMT right here, even though we don’t encounter some
until later:

The Invertible Matrix Theorem. Let A be a square n× n matrix, and let T : Rn → Rn be
the linear transformation T (x) = Ax. The following statements are equivalent.

(1) A is invertible.
(2) T is invertible.
(3) A is row equivalent to In.
(4) A has n pivots.
(5) Ax = 0 has only the trivial solution.
(6) The columns of A are linearly independent.
(7) T is one-to-one.
(8) Ax = b is consistent for all b in Rn.
(9) The columns of A span Rn.

(10) T is onto.
(11) A has a left inverse (there exists B such that BA= In).
(12) A has a right inverse (there exists B such that AB = In).
(13) AT is invertible.
(14) The columns of A form a basis for Rn.
(15) Col A= Rn.
(16) dim Col A= n.
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(17) rank A= n.
(18) Nul A= {0}.
(19) dim Nul A= 0.
(20) det(A) 6= 0.
(21) The number 0 is not an eigenvalue of A.

CHAPTER 4

SECTIONS 4.1 AND 4.3.

Definition. The determinant is a function

det: {square matrices} −→ R

with the following defining properties:

(1) det(In) = 1
(2) If we do a row replacement on a matrix (add a multiple of one row to another),

the determinant does not change.
(3) If we swap two rows of a matrix, the determinant scales by −1.
(4) If we scale a row of a matrix by k, the determinant scales by k.

Theorem. You can use the defining properties of the determinant to compute the determi-
nant of any matrix using row reduction.

Magical Properties of the Determinant.

(1) There is one and only one function det: {square matrices} → R satisfying the defin-
ing properties (1)–(4).

(2) A is invertible if and only if det(A) 6= 0.
(3) If we row reduce A without row scaling, then

det(A) = (−1)#swaps
�

product of diagonal entries in REF
�

(4) The determinant can be computed using any of the 2n cofactor expansions.
(5) det(AB) = det(A)det(B) and det(A−1) = det(A)−1

(6) det(A) = det(AT )
(7) |det(A)| is the volume of the parallelepiped defined by the columns of A.
(8) If A is an n×n matrix with transformation T (x) = Ax, and S is a subset of Rn, then

the volume of T (S) is |det(A)| times the volume of S. (Even for curvy shapes S.)
(9) The determinant is multi-linear in the columns (or rows) of a matrix.

SECTION 4.2.

Definition. The i j minor of an n× n matrix A is the (n− 1)× (n− 1) matrix Ai j you get
by deleting the i th row and the jth column from A.

Definition. The i j cofactor of A is Ci j = (−1)i+ j det Ai j.
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Definition. The determinant of an n × n matrix A can be calculated using cofactor
expansion along any row or column:

det A=
n
∑

j=1

ai jCi j for any fixed i

det A=
n
∑

i=1

ai jCi j for any fixed j

Theorem. There are special formulas for determinants of 2× 2 and 3× 3 matrices:

det
�

a b
c d

�

= ad − bc

det

 

a11 a12 a13
a21 a22 a23
a31 a32 a33

!

=
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

Theorem. The determinant of an upper-triangular or lower-triangular matrix is the product
of the diagonal entries.

CHAPTER 5

SECTION 5.1.

Definition. Let A be an n× n matrix.

(1) An eigenvector of A is a nonzero vector v in Rn such that Av = λv, for some λ in
R. In other words, Av is a multiple of v.

(2) An eigenvalue of A is a number λ in R such that the equation Av = λv has a
nontrivial solution.

If Av = λv for v 6= 0, we say λ is the eigenvalue for v, and v is an eigenvector for λ.

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Fact. A matrix is invertible if and only if zero is not an eigenvalue.

Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Definition. Let A be an n× n matrix and let λ be an eigenvalue of A. The λ-eigenspace
of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

λ-eigenspace=
�

v in Rn | Av = λv
	

=
�

v in Rn | (A−λI)v = 0
	

= Nul
�

A−λI
�

.
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SECTION 5.2.

Definition. Let A be an n× n matrix. The characteristic polynomial of A is

f (λ) = det(A−λI).

The characteristic equation of A is the equation

f (λ) = det(A−λI) = 0.

Fact. If A is an n× n matrix, then the characteristic polynomial of A has degree n.

Fact. The roots of the characteristic polynomial (i.e., the solutions of the characteristic equa-
tion) are the eigenvalues of A.

Fact. Similar matrices have the same characteristic polynomial, hence the same eigenvalues
(but different eigenvectors in general).

Definition. The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of
the characteristic polynomial.

SECTION 5.4.

Definition. Two n× n matrices A and B are similar if there is an invertible n× n matrix
C such that A= CBC−1.

Definition. An n× n matrix A is diagonalizable if it is similar to a diagonal matrix:

A= PDP−1 for D diagonal.

Fact. If A= PDP−1 for D =









d11 0 · · · 0
0 d22 · · · 0
...

... . . . ...
0 0 · · · dnn









, then

Am = PDmP−1 = P









dm
11 0 · · · 0
0 dm

22 · · · 0
...

... . . . ...
0 0 · · · dm

nn









P−1.

The Diagonalization Theorem. An n× n matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors. In this case, A= PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

!

D =









λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn









,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1,λ2, . . . ,λn are the corre-
sponding eigenvalues (in the same order).

Corollary. An n× n matrix with n distinct eigenvalues is diagonalizable.
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Procedure. How to diagonalize a matrix A:
(1) Find the eigenvalues of A using the characteristic polynomial.
(2) For each eigenvalue λ of A, compute a basis Bλ for the λ-eigenspace.
(3) If there are fewer than n total vectors in the union of all of the eigenspaces Bλ,

then the matrix is not diagonalizable.
(4) Otherwise, the n vectors v1, v2, . . . , vn in your eigenspace bases are linearly inde-

pendent, and A= PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

!

and D =









λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn









,

where λi is the eigenvalue for vi.

Definition. Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of
λ is the dimension of the λ-eigenspace.

Theorem. Let λ be an eigenvalue of a square matrix A. Then

1≤ (the geometric multiplicity of λ)≤ (the algebraic multiplicity of λ).

Corollary. Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is
1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form). Let A be an n×n matrix. The following
are equivalent:

(1) A is diagonalizable.
(2) The sum of the geometric multiplicities of the eigenvalues of A equals n.
(3) The sum of the algebraic multiplicities of the eigenvalues of A equals n, and the

geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

SECTION 5.5.

Review. Arithmetic in the complex numbers.

The Fundamental Theorem of Algebra. Every polynomial of degree n has exactly n com-
plex roots, counted with multiplicity.

Fact. Complex roots of real polynomials come in conjugate pairs.

Fact. If λ is an eigenvalue of a real matrix with eigenvector v, then λ is also an eigenvalue,
with eigenvector v.

CHAPTER 6

SECTION 6.1.

Definition.
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The dot product of two vectors x , y in Rn is

x · y =









x1
x2
...

xn









·









y1
y2
...
yn









def
= x1 y1 + x2 y2 + · · ·+ xn yn.

Thinking of x , y as column vectors, this is the same as the number x T y .

Definition. The length or norm of a vector x in Rn is

‖x‖=
p

x · x .

Fact. If x is a vector and c is a scalar, then ‖cx‖= |c| · ‖x‖.

Definition. The distance between two points x , y in Rn is

dist(x , y) = ‖y − x‖.

Definition. A unit vector is a vector v with length ‖v‖= 1.

Definition. Let x be a nonzero vector in Rn. The unit vector in the direction of x is the
vector x/‖x‖.

Definition. Two vectors x , y are orthogonal or perpendicular if x · y = 0.
Notation: x ⊥ y .

Fact. x ⊥ y ⇐⇒ ‖x − y‖2 = ‖x‖2 + ‖y‖2

SECTION 6.2.

Definition. Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
�

v in Rn | v ·w= 0 for all w in W
	

.

Fact. Let W be a subspace of Rn.
(1) W⊥ is also a subspace of Rn

(2) (W⊥)⊥ =W
(3) dim W + dim W⊥ = n
(4) If W = Span{v1, v2, . . . , vm}, then

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
�

x in Rn | x · vi = 0 for all i = 1, 2, . . . , m
	

= Nul







— vT
1 —

— vT
2 —...

— vT
m —






.

Definition. The row space of an m×n matrix A is the span of the rows of A. It is denoted
Row A. Equivalently, it is the column span of AT :

Row A= Col AT .

It is a subspace of Rn.
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Fact. Span{v1, v2, . . . , vm}⊥ = Nul







— vT
1 —

— vT
2 —...

— vT
m —






.

Fact. Let A be a matrix.

(1) (Row A)⊥ = Nul A and (Nul A)⊥ = Row A.
(2) (Col A)⊥ = Nul AT and (Nul AT )⊥ = Col A.

SECTION 6.3.

Definition. Let L = Span{u} be a line in Rn, and let x be in Rn. The orthogonal projec-
tion of x onto L is the point

projL(x) =
x · u
u · u

u.

Fact. Let W be a subspace of Rn. Every vector x can be decompsed uniquely as

x = xW + xW⊥

where xW is the closest vector to x in W, and xW⊥ is in W⊥.

Theorem. Let W be a subspace of Rn, and let x be a vector in Rn. Then projW (x) is the
closest point to x in W. Therefore

xW = projW (x) and xW⊥ = x − projW (x).

Best Approximation Theorem. Let W be a subspace of Rn, and let x be a vector in Rn.
Then y = projW (x) is the closest point in W to x, in the sense that

dist(x , y ′)≥ dist(x , y) for all y ′ in W.

Definition. We can think of orthogonal projection as a transformation:

projW : Rn −→ Rn x 7→ projW (x).

Theorem. Let W be a subspace of Rn.

(1) projW is a linear transformation.
(2) For every x in W, we have projW (x) = x.
(3) For every x in W⊥, we have projW (x) = 0.
(4) The range of projW is W.

Fact. Let W be an m-dimensional subspace of Rn, let projW : Rn→W be the projection, and
let A be the matrix for projL.

(1) A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix
with m ones and n−m zeros on the diagonal.

(2) A2 = A.
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SECTION 6.5.

Definition. A least squares solution to Ax = b is a vector bx in Rn such that

‖b− Abx‖ ≤ ‖b− Ax‖
for all x in Rn.

Theorem. The least squares solutions to Ax = b are the solutions to

(AT A)bx = AT b.

Theorem. If A has orthogonal columns v1, v2, . . . , vn, then the least squares solution to Ax =
b is

bx =
�

b · v1

v1 · v1
,

b · v2

v2 · v2
, · · · ,

b · vn

vn · vn

�

.

Theorem. Let A be an m× n matrix. The following are equivalent:
(1) Ax = b has a unique least squares solution for all b in Rn.
(2) The columns of A are linearly independent.
(3) AT A is invertible.

In this case, the least squares solution is (AT A)−1(AT b).

Review. Examples of best fit problems using least squares.


