Math 1553 Worksheet §§3.5-4.3

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - **a)** If *A* and *B* are $n \times n$ matrices and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - **b)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - c) If *A* is an $n \times n$ matrix and the equation Ax = b has at most one solution for each *b* in \mathbb{R}^n , then the solution must be *unique* for each *b* in \mathbb{R}^n .
 - **d)** If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - e) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .
 - **f)** Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.
 - **g)** If det(A) = 1 and *c* is a scalar, then det(cA) = c det(A).

- **2.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation *clockwise* by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation satisfying U(1,0) = (-2,1) and U(0,1) = (1,0).
 - **a)** Find the standard matrix for the *T* and *U*, and compute the determinant of each matrix.

b) Find the standard matrix for the composition $U \circ T$ using matrix multiplication. Compute the determinant.

c) Find the standard matrix for the composition $T \circ U$ using matrix multiplication. Compute the determinant.

- **d)** Is rotating clockwise by 60° and then performing *U*, the same as first performing *U* and then rotating clockwise by 60° ?
- e) What is the relation between the determinants of these matrices?

3. Let
$$A = \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

a) Compute det(A).

- **b)** Compute $det(A^{-1})$ without doing any more work.
- c) Compute det($(A^T)^5$) without doing any more work.
- **d)** Find the volume of the parallelepiped formed by the columns of *A*.