Math 1553 Worksheet §§3.5-4.3

1. True or false. Answer true if the statement is always true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
c) If A is an $n \times n$ matrix and the equation $A x=b$ has at most one solution for each b in \mathbf{R}^{n}, then the solution must be unique for each b in \mathbf{R}^{n}.
d) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
e) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{3} and codomain \mathbf{R}^{2}.
f) Suppose A is an $n \times n$ matrix and every vector in \mathbf{R}^{n} can be written as a linear combination of the columns of A. Then A must be invertible.
g) If $\operatorname{det}(A)=1$ and c is a scalar, then $\operatorname{det}(c A)=c \operatorname{det}(A)$.
2. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation clockwise by 60°. Let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation satisfying $U(1,0)=(-2,1)$ and $U(0,1)=(1,0)$.
a) Find the standard matrix for the T and U, and compute the determinant of each matrix.
b) Find the standard matrix for the composition $U \circ T$ using matrix multiplication. Compute the determinant.
c) Find the standard matrix for the composition $T \circ U$ using matrix multiplication. Compute the determinant.
d) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60° ?
e) What is the relation between the determinants of these matrices?
3. Let $A=\left(\begin{array}{rrrr}7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1\end{array}\right)$
a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}\left(A^{-1}\right)$ without doing any more work.
c) Compute $\operatorname{det}\left(\left(A^{T}\right)^{5}\right)$ without doing any more work.
d) Find the volume of the parallelepiped formed by the columns of A.
