Math 1553 Worksheet §§3.5-4.3 Solutions

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - a) If *A* and *B* are $n \times n$ matrices and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - **b)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - c) If *A* is an $n \times n$ matrix and the equation Ax = b has at most one solution for each *b* in \mathbb{R}^n , then the solution must be *unique* for each *b* in \mathbb{R}^n .
 - **d)** If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - e) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .
 - **f)** Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.
 - **g)** If det(A) = 1 and *c* is a scalar, then det(cA) = c det(A).

Solution.

- **a)** False. $(AB)^{-1} = B^{-1}A^{-1}$.
- **b)** True. The first part says the transformation T(x) = Ax is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying A is invertible, and there is no free variable. Therefore, the equation Ax = b has exactly one solution for each b in \mathbb{R}^n .
- c) True. The first part says the transformation T(x) = Ax is one-to-one (namely not multiple-to-one). Since *A* is $n \times n$, then it has *n* pivots. Then there is no free variable. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- **d)** False. A + B might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then A + B = 0 which is not invertible. Even in the case when A + B is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- e) False. In order for Bx to make sense, x must be in \mathbb{R}^2 , and so Bx is in \mathbb{R}^4 and A(Bx) is in \mathbb{R}^3 . Therefore, the domain of Z is \mathbb{R}^2 and the codomain of Z is \mathbb{R}^3 .
- **f)** True. If the columns of *A* span \mathbf{R}^n , then *A* is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:

If the columns of *A* span \mathbb{R}^n , then *A* has *n* pivots, so *A* has a pivot in each row and column, hence its matrix transformation T(x) = Ax is one-to-one and onto and thus invertible. Therefore, *A* is invertible.

g) False. By the properties of the determinant, scaling one row by *c* multiplies the determinant by *c*. When we take *cA* for an $n \times n$ matrix *A*, we are multiplying *each* row by *c*. This multiplies the determinant by *c* a total of *n* times. Thus, if *A* is $n \times n$ and det(*A*) = 1, then

$$\det(cA) = c^n \det(A) = c^n(1) = c^n.$$

- **2.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation *clockwise* by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation satisfying U(1,0) = (-2,1) and U(0,1) = (1,0).
 - **a)** Find the standard matrix for the *T* and *U*, and compute the determinant of each matrix.
 - **b)** Find the standard matrix for the composition $U \circ T$ using matrix multiplication. Compute the determinant.
 - c) Find the standard matrix for the composition $T \circ U$ using matrix multiplication. Compute the determinant.
 - **d)** Is rotating clockwise by 60° and then performing *U*, the same as first performing *U* and then rotating clockwise by 60° ?
 - e) What is the relation between the determinants of these matrices?

Solution.

To reduce confusion on notation, we are going to use T, U to denote standard matrices for linear transformation T, U.

a) The matrix for T is
$$\begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
. Its determination

nant is $\frac{1}{2} * \frac{1}{2} - \frac{\sqrt{3}}{2} * (-\frac{\sqrt{3}}{2}) = \frac{1}{4} + \frac{3}{4} = 1$. (Alternatively we could use the fact that the determinant for a rotation matrix is always 1.)

The matrix for U is $(U(e_1) \quad U(e_2)) = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$. Its determinant is -2 * 0 - 1 * 1 = -1.

b) The matrix for $U \circ T$ is

$$\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -1 - \frac{\sqrt{3}}{2} & \frac{1}{2} - \sqrt{3} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Its determinant is -1, as det(UT) = det(U)det(T)

c) The matrix for $T \circ U$ is

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 + \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} + \sqrt{3} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

Its determinant is -1 also, as det(TU) = det(T) det(U)

- **d)** No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.
- e) det(UT) and det(TU) are the same, since the determinant of the product of two matrices *is* commutative, unlike the product itself. Specifically, det(UT) = det(TU) = det(TU) × det(U).

3. Let
$$A = \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- **a)** Compute det(*A*).
- **b)** Compute $det(A^{-1})$ without doing any more work.
- c) Compute det($(A^T)^5$) without doing any more work.
- d) Find the volume of the parallelepiped formed by the columns of A.

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$\det \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix} = -\det \begin{pmatrix} -1 & 0 & 6 \\ 9 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

Now we expand the second column by cofactors again:

$$\cdots = -2 \det \begin{pmatrix} -1 & 6 \\ 0 & -1 \end{pmatrix} = (-2)(-1)(-1) = -2.$$

b) From our notes, we know $det(A^{-1}) = \frac{1}{det(A)} = -\frac{1}{2}$.

c) $\det(A^T) = \det(A) = -2$. By the multiplicative property of determinants, if *B* is any $n \times n$ matrix, then $\det(B^n) = (\det B)^n$, so

$$\det((A^T)^5) = (\det A^T)^5 = (-2)^5 = -32.$$

d) Volume of the parallelepiped is $|\det(A)| = 2$