1. True or false: If v_1 and v_2 are linearly independent eigenvectors of an $n \times n$ matrix *A*, then they must correspond to different eigenvalues.

2. In what follows, *T* is a linear transformation with matrix *A*. Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)
a) *T* : R³ → R³ that projects vectors onto the *xz*-plane in R³.

b) $T : \mathbf{R}^2 \to \mathbf{R}^2$ that reflects vectors over the line y = 2x in \mathbf{R}^2 .

3. Answer yes, no, or maybe. Justify your answers. In each case, *A* is a matrix whose entries are real numbers.

a) Suppose $A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$. Then the characteristic polynomial of *A* is $\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$

b) If *A* is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda - 5)^2$, then the 5-eigenspace is 2-dimensional.

4. Find the eigenvalues and a basis for each eigenspace of $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$.