Math 1553 Worksheet: Sections 5.1-5.2

1. True or false: If v_{1} and v_{2} are linearly independent eigenvectors of an $n \times n$ matrix A, then they must correspond to different eigenvalues.
2. In what follows, T is a linear transformation with matrix A. Find the eigenvectors and eigenvalues of A without doing any matrix calculations. (Draw a picture!)
a) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that projects vectors onto the $x z$-plane in \mathbf{R}^{3}.
b) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that reflects vectors over the line $y=2 x$ in \mathbf{R}^{2}.
3. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) Suppose $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7\end{array}\right)$. Then the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda) .
$$

b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the $5-$ eigenspace is 2 -dimensional.
4. Find the eigenvalues and a basis for each eigenspace of $A=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$.

