Math 1553 Reading Day Fall 2021

(!) This is a preview of the published version of the quiz

Started: Nov 30 at 10:25am

Quiz Instructions

Question 1 1 pts

If $\{u, v, w\}$ is a set of linearly dependent vectors, then w must be a linear combination of u and v.

- True

Question 2 1 pts

Find the value of k that makes the following vectors linearly dependent:

$$\begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -3 \\ k \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$

Question 3

1 pts

If $\{u, v\}$ is a basis for a subspace W, then $\{u - v, u + v\}$ is also a basis for W.

○ True

Question 4

1 pts

Which of the following are subspaces of \mathbb{R}^4 ?

(1) The set
$$W = \begin{cases} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 in \mathbb{R}^4 : $2x - y - z = 0$.

- (2) The set of solutions to the equation $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- oneither is a subspace
- \bigcirc (2) is a subspace but (1) is not a subspace
- both are subspaces

Question 5

1 pts

Let W be the set of vectors $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ in \mathbb{R}^3 with abc = 0. Then W is closed under addition, meaning that if v and w are in W, then v + w is in W.

- True
- False

Question 6	1	p	ts

Match the transformations given below with their corresponding 2×2 matrix.

- A. $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- B. $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
- C. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- D. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- E. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Counter-clockwise rotation by 90 degrees

[Choose]

Reflection about the line y=x

[Choose]

Clockwise rotation by 90 degrees

[Choose]

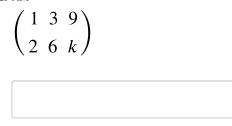
Reflection across the x-axis

Question 7 1 pts

[Choose]

Find the value of k so that the matrix transformation for the following matrix is not onto.

Reflection across the y-axis



Question 8 1 pts

Find the **nonzero** value of k that makes the following matrix not invertible.

$$\begin{pmatrix} 1 & -1 & 0 \\ k & k^2 & 0 \\ -1 & 1 & 5 \end{pmatrix}$$

Enter an integer as your answer. Note that 0 is not the correct answer, since the question asks for a nonzero value of k.

Question 9 1 pts

Match the following definitions with the corresponding term describing a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$.

Each definition should be used exactly once.

- A. For each y in \mathbb{R}^n there is at most one x in \mathbb{R}^m so that T(x) = y.
- B. For each y in \mathbb{R}^n there is at least one x in \mathbb{R}^m so that T(x) = y.
- C. For each y in \mathbb{R}^n there is exactly one x in \mathbb{R}^m so that T(x) = y.
- D. For each x in \mathbb{R}^m there is exactly one y in \mathbb{R}^n so that T(x) = y.

T is a transformation

[Choose]

T is one-to-one	[Choose]	•	
T is onto	[Choose]	~	
T is one-to-one and onto	[Choose]	•	

Question 10	1 pts
Suppose A is a 4×6 matrix. Then the dimension of the null space of A is	s at most 2.
○ True	
○ False	

Question 11 1 pts

Complete the entries of the matrix A so that $\operatorname{Col}(A) = \operatorname{Span}\left\{\binom{1}{2}\right\}$ and $\operatorname{Nul}(A) = \operatorname{Span}\left\{\binom{1}{1}\right\}$. $A = \binom{r}{s} \binom{1}{2}$, where $r = \binom{r}{s} \binom{1}{2}$ and $s = \binom{r}{s} \binom{1}{s} \binom{1}{s}$

Question 12

Suppose $T: \mathbb{R}^7 \to \mathbb{R}^9$ is a linear transformation with standard matrix A, and suppose that the range of T has a basis consisting of 3 vectors. What is the

1 pts

dimension of the null space of A?

Question 131 ptsDefine a transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ by T(x, y, z) = (0, x - y, y - x, z).Which one of the following statements is true? $\bigcirc T$ is onto but not one-to-one. $\bigcirc T$ is one-to-one and onto. $\bigcirc T$ is neither one-to-one nor onto. $\bigcirc T$ is one-to-one but not onto.

 Question 14
 1 pts

 Suppose that A is a 7×5 matrix, and the null space of A is a line. Say that T is the matrix transformation T(v) = Av. Which of the following statements must be true about the range of T?

 It is a 4-dimensional subspace of \mathbb{R}^7

 It is a 6-dimensional subspace of \mathbb{R}^5

 It is a 6-dimensional subspace of \mathbb{R}^7

Question 15 1 pts

ollowing must be true al	and $T:\mathbb{R}^3 o\mathbb{R}^4$ are linear transformations. Which of the bout $T\circ S$?
○ It is one-to-one	
The composition is not only a composition is not only a composition.	defined
○ It is onto	
○ It is not onto	

Question 16	1 pts
Suppose that A is an invertible $n \times n$ matrix. Then $A + A$ must be invertible.	
○ True	
○ False	

Question 171 ptsSuppose A is a 3×3 matrix and the equation $Ax = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$ has exactly one solution.Then A must be invertible. \bigcirc True \bigcirc False

Question 18	1 pts
Suppose that A and B are $n \times n$ matrices and AB is not invertible.	
Which one of of the following statements must be true?	
○ None of these	
○ A is not invertible	
○ B is not invertible	
At least one of the matrices A or B is not invertible	

Question 19 1 pts Suppose A and B are 3×3 matrices, with $\det(A) = 3$ and $\det(B) = -6$. Find $\det(2A^{-1}B)$.

Question 20 1 pts

Let A be the 3×3 matrix satisfying $Ae_1 = e_3$, $Ae_2 = e_2$, and $Ae_3 = 2e_1$ (recall that we use e_1 , e_2 , and e_3 to denote the standard basis vectors for \mathbb{R}^3).

Find $\det(A)$.

Question 21 1 pts

Suppose A is a square matrix and $\lambda = -1$ is an eigenvalue of A.

Which one of the following statements must be true?

- \bigcirc *A* is invertible.
- \bigcirc The equation \(Ax = x \\)has only the trivial solution.
- \bigcirc Nul(A + I) = {0}
- \bigcirc For some nonzero x, the vectors Ax and x are linearly dependent.
- \bigcirc The columns of A+I are linearly independent.

Question 22

Suppose A is a 4 x 4 matrix with characteristic polynomial $-(1 - \lambda)^2(5 - \lambda)\lambda$.

What is the rank of A?

Question 23 1 pts

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that reflects across the line $x_2 = 2x_1$.

Find the value of k so that $A \begin{pmatrix} 2 \\ k \end{pmatrix} = \begin{pmatrix} 2 \\ k \end{pmatrix}$.

Question 24

1 pts

1 pts

Find the value of k such that the matrix $\begin{pmatrix} 1 & k \\ 1 & 3 \end{pmatrix}$ has one real eigenvalue of algebraic multiplicity 2. *Enter an integer value below.*

Question 25 1 pts

Suppose that A is a 5×5 matrix with characteristic polynomial $(1-\lambda)^3(2-\lambda)(3-\lambda)$ and also that A is diagonalizable. What is the dimension of the 1-eigenspace of A?

Question 26

Find the value of t such that 3 is an eigenvalue of $\begin{pmatrix} 1 & t & 3 \\ 1 & 1 & 1 \\ 3 & 0 & 3 \end{pmatrix}$. *Enter an integer answer below.*

Question 27 1 pts

Say that A is a 2×2 matrix with characteristic polynomial $(1 - \lambda)(2 - \lambda)$. What is the characteristic polynomial of A^2 ?

- $\bigcirc (1-\lambda)^2(2-\lambda)^2$
- $\bigcirc (1-\lambda)(4-\lambda)$
- $\bigcirc (1-\lambda^2)(2-\lambda^2)$
- $\bigcirc (1-\lambda)(2-\lambda)$
- $\bigcirc (1-\lambda^2)(4-\lambda^2)$

Question 28 1 pts

Suppose that a vector x is an eigenvector of A with eigenvalue 3 and that x is also an eigenvector of B with eigenvalue 4. Which of the following is true about the matrix 2A - B and x:

- $\bigcirc x$ is an eigenvector of 2A B with eigenvalue 3
- $\bigcirc x$ is an eigenvector of 2A B with eigenvalue 1
- $\bigcirc \ x$ is an eigenvector of 2A-B with eigenvalue 2
- O None of these
- $\bigcirc \ x$ is an eigenvector of 2A-B with eigenvalue 4

Question 29 1 pts

Suppose that A is a 4×4 matrix with eigenvalues 0, 1, and 2, where the eigenvalue 1 has algebraic multiplicity two.

Which of the following must be true?

(1) A is not diagonalizable

- (2) A is not invertible
- O Both (1) and (2) must be true
- O Neither statement is necessarily true
- (2) must be true but (1) might not be true
- (1) must be true but (2) might not be true

Question 30

1 pts

Suppose A is a 5×5 matrix whose entries are real numbers. Then A must have at least one real eigenvalue.

- False

Question 31

1 pts

Suppose A is a positive stochastic matrix and $A \begin{pmatrix} 3/5 \\ 2/5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 2/5 \end{pmatrix}$. Let $v = \begin{pmatrix} 5 \\ 0.5 \end{pmatrix}$.

As n gets very large, A^nv approaches the vector $\binom{r}{s}$, where:

$$r = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 and $s = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$

Question 32

Suppose that A is a 4×4 matrix of rank 2. Which one of the following statements must be true?

- $\bigcirc \ A$ is not diagonalizable
- none of these
- \bigcirc A cannot have four distinct eigenvalues
- \bigcirc A is diagonalizable

Question 33 1 pts

Suppose A is a 2×2 matrix whose entries are real numbers, and suppose A has eigenvalue 1+i with corresponding eigenvector $\begin{pmatrix} 2\\1+i \end{pmatrix}$.

Which of the following must be true?

- \bigcirc A must have eigenvalue 1-i with corresponding eigenvector $\begin{pmatrix} 2\\1+i \end{pmatrix}$
- None of these
- \bigcirc A must have eigenvalue 1+i with corresponding eigenvector $\begin{pmatrix} 2\\ 1-i \end{pmatrix}$
- \bigcirc A must have eigenvalue 1-i with corresponding eigenvector $\begin{pmatrix} 2\\ 1-i \end{pmatrix}$

Question 34 1 pts

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates the plane clockwise by 45 degrees, and let A be the standard matrix for T.

Which one of the following statements is true?

- \bigcirc A has one complex eigenvalue with algebraic multiplicity two
- A has one real eigenvalue with algebraic multiplicity two
- A has two distinct complex eigenvalues.
- A has two distinct real eigenvalues

Question 35

1 pts

Suppose u and v are orthogonal unit vectors (to say that a vector is a unit vector means that it has length 1). Find the dot product

$$(3u - 8v) \cdot 4u$$
.

Question 36

1 pts

Find the value of k that makes the following pair of vectors orthogonal.

$$\begin{pmatrix} 2 \\ k \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} k \\ 1 \\ -6 \end{pmatrix}$

Your answer should be an integer.

Question 37

1 pts

○ True

 \bigcirc False

$^{:25 ext{AM}}$ If W is a subspace of \mathbb{R}^{100} and v	Quiz: Math 1553 Reading Day Fall 2021 is a vector in W^\perp then the orthogonal projection
of v to W must be the 0 vector.	
○ True	
○ False	
Question 38	1 pts
Suppose W is a subspace of \mathbb{R}^n . of x onto W , then $x \cdot x_W$ must be	If x is a vector and x_W is the orthogonal projection 0 .

Question 39	1 pts
Suppose that A is a 3×3 invertible matrix. What is the dot product between second row of A and third column of A^{-1} equal to?	the
<u> </u>	
O 0	
Not Enough Information is Given	
○ -2	
○ 2	

Question 40 1 pts

Find the orthogonal projection of	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	onto Span <	$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$	$\Big) \Big\}$
-----------------------------------	--	-------------	---	----------------

The orthogonal projection is $\binom{a}{b}$, where: $a = \boxed{ }$ and $b = \boxed{ }$

Enter integers or fractions as your entries.

Question 41 1 pts

Compute the orthogonal projection of the vector $\begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$ to the plane spanned by the

vectors $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. What is the first coordinate of the projection? Your answer should be an integer.

Question 42 1 pts

Suppose B is the standard matrix for the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal projection onto the subspace $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x+y+2z=0 \right\}$.

What is the dimension of the 1-eigenspace of B?

Let W be the subspace of \mathbb{R}^4 given by all vectors $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ such that

x - y + z + w = 0. Find dimension of the orthogonal complement W^{\perp} .

Question 44 1 pts

If b is in the column space of the matrix A then every solution to Ax = b is a least squares solution.

- True
- False

Question 45 1 pts

If A is an $m \times n$ matrix, b is in \mathbb{R}^m , and \hat{x} is a least squares solution to Ax = b, then \hat{x} is the point in $\operatorname{Col}(A)$ that is closest to b.

- True

Question 46 1 pts

Find the least squares solution \hat{x} to the linear system

$$\begin{pmatrix} 6 \\ -2 \\ -2 \end{pmatrix} x = \begin{pmatrix} 14 \\ -2 \\ 0 \end{pmatrix}.$$

If your answer is an integer, enter an integer.

If your answer is not an integer, enter a fraction.

Question 47 1 pts

Find the best fit line y= x+ for the data points

(-7, -22), (0, -2), and (7, 6) using the method of least squares. Your answers should both be integers.

Question 48 1 pts

Let
$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix}^{-1}$$
.

Find r and s so that $A^3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} r \\ s \end{pmatrix}$.

$$S =$$

Question 49	1 pts
If A is a diagonalizable 6×6 matrix, then A has 6 distinct eigenvalues.	
○ True	
○ False	

Question 50 1 pts

Find the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 4 \\ 4 & 7 \end{pmatrix}$ and write them in increasing order.

The smaller eigenvalue is λ_1 =

The larger eigenvalue is λ_2 =

No new data to save. Last checked at 10:25am

Submit Quiz