
Midterm 3 (3.5-5.5)

1. Compute the inverse of

(
1 1
2 3

)
.

(a)

(
3 −2
−1 1

)
(b)

(
3 1
2 1

)
(c)

(
1 −2
−1 3

)
(d)

(
−3 1
2 −1

)
(e)

(
−1 1
2 −3

)
(f)

(
3 −1
−2 1

)
Solution: This is a quintessential inverse problem, basically #1 from the 3.5-3.6 Webwork. The inverse

is
1

3(1)− 2(1)

(
3 −1
−2 1

)
=

(
3 −1
−2 1

)
, which is answer (f).

2. Answer yes, no, or maybe to each of the following questions. In each case, A is a matrix whose entries
are real numbers.

(a) Suppose that A is a 3× 3 matrix whose 1-eigenspace is a line and whose 2-eigenspace is a plane.
Is A invertible?

(b) Suppose that A is a 5 × 5 matrix and that the set of solutions to Ax = e5 is a line in R5. Is A
invertible?

Solution:

(a) Yes. From the information given, the characteristic polynomial of A must be (1− λ)(2− λ)2, so
λ = 0 is not an eigenvalue of A and therefore A is invertible.

(b) No. We are given that Ax = e5 has infinitely many solutions, thus Ax = 0 has infinitely many
solutions and A is not invertible by the Invertible Matrix Theorem.

3. Suppose A and B are the invertible 2× 2 matrices whose inverses satisfy

A−1 =

(
1 −1
0 2

)
, B−1 =

(
2 0
1 3

)
.

Find (AB)−1.

(a)

(
1 −3
2 6

)
(b)

(
1/2 1/4
−1/6 1/12

)
(c)

(
5/12 1/6
−1/12 1/6

)
(d)

(
2 −2
1 5

)



(e)

(
5 −2
−1 2

)
Solution: The answer is (d), using the key fact (AB)−1 = B−1A−1.

(AB)−1 = B−1A−1 =

(
2 0
1 3

)(
1 −1
0 2

)
=

(
2 −2
1 5

)

4. Suppose det

a b c
d e f
g h i

 = 3. Find the determinant of the matrix below.

 d e f
4a 4b 4c

g − 2a h− 2b i− 2c


(a) 3

(b) −3

(c) 6

(d) −6

(e) 12

(f) −12

(g) 24

(h) −24

Solution: This one was basically taken from the Determinants I Webwork #7 and is also similar to a
Quiz 6 and sample midterm problem.

To get the second matrix from the first, we switch the first two rows (multiplying the determinant by
−1), then subtract two times row 2 from row 3 (doesn’t change determinant), then multiply the second
row by 4 (multiplying the determinant by 4).

Putting this together: our final answer is 3(−1)(4) = −12.

5. Say that R is a rectangle in R2 with side lengths 3 and 4, and that T (v) = Av is the matrix transfor-
mation where

A =

(
2 9
1 3

)
.

What is the area of T (R)?

Solution: This is a slight modification of #9 from the Determinants I Webwork. The area of T (R) is

Area(T (R)) = |det(A)|Area(R) = |(6− 9)|(3 · 4) = 36.

6. Find the value of c so that

det

−1 1 −2
0 c 1
1 3 1

 = 1.

Solution: This problem was taken from problem #3 in the sample midterm, with some numbers
changed.

Expanding the determinant using the cofactor expansion along the 2nd row gives us

c(−1)4 det

(
−1 −2
1 1

)
+ 1(−1)5 det

(
−1 1
1 3

)
= 1,

c(−1 + 2)− (−3− 1) = 1

c+ 4 = 1, c = −3.
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7. (a) Consider the line L in R2 given by the equation y = 7x, and let T : R2 → R2 be the linear
transformation that reflects vectors across L. What are the eigenvalues of the standard matrix
for T?

(b) Let A be the 3 × 3 matrix for the natural projection onto the xy-plane in R3. What are the
eigenvalues of A?

Hint: It is not necessary to find the standard matrix in (a) or (b) to answer these questions.

Solution: This problem was taken problem #2 from the 5.1-5.2 worksheet with almost no modification.

(a) The eigenvalues are −1 and 1. T fixes vectors along the line y = 7x (so λ = 1 is an eigenvalue)

and flips vectors that are on the perpendicular line y = −1

7
x (so λ = 1 is an eigenvalue). The

most eigenvalues a 2 × 2 matrix can have is 2, so the eigenvalues λ = 1 and λ = −1 are the
eigenvalues of A.

(b) The eigenvalues are 0 and 1. Av = v for all vectors in the xy-plane of R3 (so λ = 1 is an
eigenvalue) and Av = 0 for all vectors on the z-axis (so λ = 0 is an eigenvalue). By the previous
sentence, the geometric multiplicities of λ = 0 and λ = 1 sum to 3, so there are no more possible
eigenvalues for this 3× 3 matrix.

8. Let A be the 2×2 matrix for counterclockwise rotation by 90◦ in R2. What are the eigenvalues for A?

(a) −1 and 1

(b) 1 only

(c) −1 only

(d) −π
2

and
π

2

(e)
π

2
only

(f) −π
2

only

(g) i and −i.
(h) iπ2 and −iπ2

Solution: The matrix is A =

(
0 −1
1 0

)
, and we solve for the eigenvalues:

0 = det(A− λI) = det

(
−λ −1
1 −λ

)
= λ2 + 1,

so λ2 = −1, thus λ = ±i.

9. The number λ = 5 is an eigenvalue of the matrix A =

(
2 −3
−3 2

)
. Find the value of h so that

A

(
−1
h

)
= 5

(
−1
h

)
.

Solution: The answer is h = 1.

(A− 5I | 0) =

(
−3 −3 0
−3 −3 0

)
RREF−−−−→

(
1 1 0
0 0 0

)
,

so x1 + x2 = 0. This gives us x1 = −x2 and x2 is free, and in parametric vector form(
x1
x2

)
=

(
−x2
x2

)
= x2

(
−1
1

)
.
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10. Answer true or false to each of the following questions. In each case, A is a matrix whose entries are
real numbers.

(a) Suppose that A is an n× n matrix and v is a nonzero vector in the null space of A. Then v is an
eigenvector for A.

(b) Suppose that A is an n× n matrix and that u and v are eigenvectors of A. Then u+ v must be
an eigenvector of A.

Solution:

(a) True. This emphasizes the fundamental fact that λ = 0 is an eigenvalue of A if and only if Av = 0
for some nonzero vector v, in which case v is an eigenvector corresponding to λ = 0.

(b) False. For example, take A =

(
1 0
0 2

)
. Then u =

(
1
0

)
and v =

(
0
1

)
are eigenvectors of A but

u+ v is not an eigenvector:

A(u+ v) = A

(
1
1

)
=

(
1
2

)
.

(The answer would have been “true” if u and v were further assumed to be different vectors in
the same eigenspace)

11. Suppose A is a 4× 4 matrix with characteristic polynomial

det(A− λI) = (5− λ)(−5− λ)3.

Which of the following are possible for the dimension of the (−5)-eigenspace? Select all that apply.

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

Solution: Since λ = −5 is an eigenvalue and has algebraic multiplicity 3, we know

3 ≥ (geom. mult. of λ = −5) ≥ 1.

So (b), (c), and (d) are possible, but (a) and (e) are impossible.

12. Find all values of k so that the matrix A =

(
−2 k
12 10

)
has exactly one real eigenvalue with algebraic

multiplicity 2.

Solution: This is #4 from the 5.2 Webwork with some numbers changed. The characteristic polyno-
mial is

λ2 − Tr(A)λ+ det(A) = λ2 − 8λ+ (−20 + 12k).

In order for this to be a perfect square, we need it to equal

(λ− 4)2 = λ2 − 8λ+ 16,

so 16 = −20 + 12k, and we find k = −3.
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13. Find a basis for the (−2)-eigenspace of the matrix A below:

A =

(
−3 2
−2 2

)
.

(a)

{(
0
0

)}
(b)

{(
1
2

)}
(c)

{(
2
1

)}
(d)

{(
2
−1

)}
(e)

{(
−1
2

)}
(f)

{(
1
2

)
,

(
2
1

)}
Solution: This is a standard kind of problem we do often in chapter 5 (for a similar exercise, see #2
from the 5.2 Webwork).

(A+ 2I | 0) =

(
−1 2 0
−2 4 0

)
RREF−−−−→

(
1 −2 0
0 0 0

)
,

so x1 − 2x2 = 0. Thus x1 = 2x2 and x2 is free. Therefore, the (−2)-eigenspace is spanned by

(
2
1

)
.

14. Answer true or false to each of the following questions. In each case, A is a matrix whose entries are
real numbers.

(a) Suppose that A is a 5× 5 matrix with eigenvalues 6, 7, 8, and 9, and that the 7-eigenspace for A
is a two-dimensional plane. Then A must be diagonalizable.

(b) Suppose A is an n× n matrix and λ = 6 is an eigenvalue of A. Then the 6-eigenspace of A must
be a subspace of Rn.

Solution:

(a) True: A is a 5× 5 matrix and the sum of geometric multiplicities of its real eigenvalues is 5, so A
is diagonalizable.

(b) True. There are many ways to see this fundamental fact. One way is to note that the 6-eigenspace
of A is Nul(A− 6I), and the null space of an n× n matrix is automatically a subspace of Rn.
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15. Let A be the matrix which has the diagonalization below:

A =

 1 3 −2
0 4 1
−2 0 3

2 0 0
0 2 0
0 0 −1

 1 3 −2
0 4 1
−2 0 3

−1

.

Answer the following questions.

(a) Which of the following is a basis for the 2-eigenspace of A?

i.


 1

0
−2


ii.


 1

0
−2

 ,

3
4
0


iii.


3

4
0

 ,

−2
1
3


iv.


 1

0
−2

 ,

3
4
0

 ,

−2
1
3


(b) Find A35

−2
1
3

.

(i)

 2
−1
−3

 (ii)

−2
1
3

 (iii)

(−2)35

135

325

 (iv)

−2 · 235
235

3 · 235


Solution: This problem is similar to many diagonalization problems from the 5.4 Webwork, class,
and #2 from the 5.4-5.5 worksheet,, except that it has saved us from doing most of the work by
diagonalizing the matrix for us. We have been given a diagonalization of A, so A = CDC−1 where C
is a matrix whose columns are eigenvectors of A and D is the diagonal matrix of corresponding vectors
(written in matching order!).

(a)


 1

0
−2

 ,

3
4
0

. From the diagonalization of A, we see that the first two columns of C are a

basis of the 2-eigenspace of A.

(b)

−2
1
3

 is an eigenvector in the (−1)-eigenspace of A, so

A35

−2
1
3

 = (−1)35

−2
1
3

 = −

−2
1
3

 =

 2
−1
−3

 .
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16. Which of the following matrices are diagonalizable? Select all that apply.

(a)

(
0 0
0 0

)
(b)

(
4 4
0 4

)
(c)

(
1 2
0 3

)
(d)

(
0 1
1 0

)
Solution:

(a) Yes: the zero matrix is diagonalizable (in fact, diagonal!).

(b) No: A has exactly only one eigenvalue λ = 4 with algebraic multiplicity 2, but A− 4I is

(
0 4
0 0

)
,

so the 4-eigenspace only has geometric multiplicity 1.

(c) Yes: the 2× 2 matrix has two distinct real eigenvalues and is therefore diagonalizable.

(d) Yes: the characteristic polynomial is λ2− 1, so it has λ = ±1 as eigenvalues and is diagonalizable
by the same reasoning as (c).

17. Answer true or false to the following questions. In each case, A is a matrix whose entries are real
numbers.

(a) If A is an n× n diagonal matrix, then A must be diagonalizable.

(b) Suppose A is an n × n matrix and λ = 2 is an eigenvalue of A. Then there are infinitely many
vectors v in Rn that satisfy Av = 2v.

Solution:

(a) True: A = IAI−1.

(b) True: Since 2 is an eigenvalue we know that (A−2I)v = 0 has a non-trivial solution and therefore
has infinitely many solutions, so Av = 2v has infinitely many solutions.

18. Let A =

2 0 0
0 1 h
0 0 h

 . For which of the following values of h is A diagonalizable? Select all that apply.

(a) h = 0

(b) h = 1

(c) h = −1

(d) h = 2

Solution:

(a) Yes. When h = 0, the matrix is diagonal.

(b) No. When h = 1, the 1-eigenspace has algebraic multiplicity 2 but geometric multiplicity 1.

(c) Yes. When h = −1, we see from the triangular form of A that A is a 3× 3 matrix with 3 different
real eigenvalues 2, 1,−1, thus A is diagonalizable.

(d) Yes. When h = 2, the 2-eigenspace is a plane because A−2I only has rank one. The 1-eigenspace
has dimension at least one (thus exactly one), so the matrix A is diagonalizable.
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19. One eigenvalue of the matrix A =

(
1 −4
1 1

)
is λ = 1 + 2i.

(a) Which of the following is an eigenvector corresponding to the eigenvalue λ = 1 + 2i?

i.

(
−2i

1

)
ii.

(
4

2− 2i

)
iii.

(
4
2i

)
iv.

(
−2i

4

)
v.

(
4
−2i

)
(b) What is the other eigenvalue of A?

i. 1− 2i

ii. −1 + 2i

iii. −2 + i

iv. 2− i
v. There is no other eigenvalue of A, because λ = 1 + 2i has algebraic multiplicity 2.

vi. We need more information to determine what the second eigenvalue of A is.

Solution: Standard 5.5 example, similar to 5.5 Webwork #2 and practice exam #15.

(a) The answer is (v). The first row of A − (1 + 2i)I is (−2i − 4), so one eigenvector is

(
4
−2i

)
by

the 2× 2 eigenvector trick.

(b) The answer is (i). The other eigenvalue of A is the complex conjugate of 1+2i, namely λ = 1−2i.

20. Suppose A is a 3×3 matrix whose entries are real numbers, and suppose that λ = 4−5i is an eigenvalue
for A. How many real eigenvalues does A have?

(a) A has no real eigenvalues.

(b) A has exactly one real eigenvalue.

(c) A has exactly 2 real eigenvalues.

(d) Not enough information to tell how many real eigenvalues A has.

Solution: The answer is (b). Similar to #1a from the 5.4-5.5 worksheet and #4 from the 5.5 Webwork.
We know that every 3×3 real matrix A must have at least one real eigenvalue (odd degree polynomial).
From what is given we know that it already has 4 − 5i and (consequently) 4 + 5i as two eigenvalues,
so A cannot have more than one real eigenvalue. Therefore, A has exactly one real eigenvalue.

A similar but slightly alternative way to see it: Applying the Fundamental Theorem of Algebra to
the characteristic polynomial of A, we are guaranteed that A has exactly 3 eigenvalues counting mul-
tiplicities. We know 4 − 5i is an eigenvalue of A, therefore 4 + 5i is automatically an eigenvalue of
A by section 5.5. This leaves us with just one eigenvalue remaining. Since non-real eigenvalues come
in complex conjugate pairs (so we cannot have an additional non-real eigenvalue or repeat one of our
non-real eigenvalues), our final eigenvalue must be real, so A has exactly one real eigenvalue.

One such matrix is A =

 11 2 0
−37 −3 0

0 0 1

, which has eigenvalues λ = 4± 5i and λ = 1.
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