1. Compute the inverse of $\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$.
(a) $\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{cc}-3 & 1 \\ 2 & -1\end{array}\right)$
(e) $\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)$
(f) $\left(\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right)$

Solution: This is a quintessential inverse problem, basically \#1 from the 3.5-3.6 Webwork. The inverse is $\frac{1}{3(1)-2(1)}\left(\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right)=\left(\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right)$, which is answer (f).
2. Answer yes, no, or maybe to each of the following questions. In each case, A is a matrix whose entries are real numbers.
(a) Suppose that A is a 3×3 matrix whose 1-eigenspace is a line and whose 2 -eigenspace is a plane. Is A invertible?
(b) Suppose that A is a 5×5 matrix and that the set of solutions to $A x=e_{5}$ is a line in \mathbf{R}^{5}. Is A invertible?

Solution:

(a) Yes. From the information given, the characteristic polynomial of A must be $(1-\lambda)(2-\lambda)^{2}$, so $\lambda=0$ is not an eigenvalue of A and therefore A is invertible.
(b) No. We are given that $A x=e_{5}$ has infinitely many solutions, thus $A x=0$ has infinitely many solutions and A is not invertible by the Invertible Matrix Theorem.
3. Suppose A and B are the invertible 2×2 matrices whose inverses satisfy

$$
A^{-1}=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right), \quad B^{-1}=\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)
$$

Find $(A B)^{-1}$.
(a) $\left(\begin{array}{cc}1 & -3 \\ 2 & 6\end{array}\right)$
(b) $\left(\begin{array}{cc}1 / 2 & 1 / 4 \\ -1 / 6 & 1 / 12\end{array}\right)$
(c) $\left(\begin{array}{cc}5 / 12 & 1 / 6 \\ -1 / 12 & 1 / 6\end{array}\right)$
(d) $\left(\begin{array}{cc}2 & -2 \\ 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{cc}5 & -2 \\ -1 & 2\end{array}\right)$

Solution: The answer is (d), using the key fact $(A B)^{-1}=B^{-1} A^{-1}$.

$$
(A B)^{-1}=B^{-1} A^{-1}=\left(\begin{array}{cc}
2 & 0 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
1 & 5
\end{array}\right)
$$

4. Suppose $\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=3$. Find the determinant of the matrix below.

$$
\left(\begin{array}{ccc}
d & e & f \\
4 a & 4 b & 4 c \\
g-2 a & h-2 b & i-2 c
\end{array}\right)
$$

(a) 3
(b) -3
(c) 6
(d) -6
(e) 12
(f) -12
(g) 24
(h) -24

Solution: This one was basically taken from the Determinants I Webwork \#7 and is also similar to a Quiz 6 and sample midterm problem.
To get the second matrix from the first, we switch the first two rows (multiplying the determinant by -1), then subtract two times row 2 from row 3 (doesn't change determinant), then multiply the second row by 4 (multiplying the determinant by 4).
Putting this together: our final answer is $3(-1)(4)=-12$.
5. Say that R is a rectangle in \mathbf{R}^{2} with side lengths 3 and 4 , and that $T(v)=A v$ is the matrix transformation where

$$
A=\left(\begin{array}{ll}
2 & 9 \\
1 & 3
\end{array}\right)
$$

What is the area of $T(R)$?
Solution: This is a slight modification of \#9 from the Determinants I Webwork. The area of $T(R)$ is

$$
\operatorname{Area}(T(R))=|\operatorname{det}(A)| \operatorname{Area}(R)=|(6-9)|(3 \cdot 4)=36
$$

6. Find the value of c so that

$$
\operatorname{det}\left(\begin{array}{ccc}
-1 & 1 & -2 \\
0 & c & 1 \\
1 & 3 & 1
\end{array}\right)=1
$$

Solution: This problem was taken from problem $\# 3$ in the sample midterm, with some numbers changed.
Expanding the determinant using the cofactor expansion along the 2nd row gives us

$$
\begin{gathered}
c(-1)^{4} \operatorname{det}\left(\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right)+1(-1)^{5} \operatorname{det}\left(\begin{array}{cc}
-1 & 1 \\
1 & 3
\end{array}\right)=1 \\
c(-1+2)-(-3-1)=1 \\
c+4=1, \quad c=-3
\end{gathered}
$$

7. (a) Consider the line L in \mathbf{R}^{2} given by the equation $y=7 x$, and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation that reflects vectors across L. What are the eigenvalues of the standard matrix for T ?
(b) Let A be the 3×3 matrix for the natural projection onto the $x y$-plane in \mathbf{R}^{3}. What are the eigenvalues of A ?

Hint: It is not necessary to find the standard matrix in (a) or (b) to answer these questions.
Solution: This problem was taken problem \#2 from the 5.1-5.2 worksheet with almost no modification.
(a) The eigenvalues are -1 and 1. T fixes vectors along the line $y=7 x$ (so $\lambda=1$ is an eigenvalue) and flips vectors that are on the perpendicular line $y=-\frac{1}{7} x$ (so $\lambda=1$ is an eigenvalue). The most eigenvalues a 2×2 matrix can have is 2 , so the eigenvalues $\lambda=1$ and $\lambda=-1$ are the eigenvalues of A.
(b) The eigenvalues are 0 and $1 . ~ A v=v$ for all vectors in the $x y$-plane of \mathbf{R}^{3} (so $\lambda=1$ is an eigenvalue) and $A v=0$ for all vectors on the z-axis (so $\lambda=0$ is an eigenvalue). By the previous sentence, the geometric multiplicities of $\lambda=0$ and $\lambda=1$ sum to 3 , so there are no more possible eigenvalues for this 3×3 matrix.
8. Let A be the 2×2 matrix for counterclockwise rotation by 90° in \mathbf{R}^{2}. What are the eigenvalues for A ?
(a) -1 and 1
(b) 1 only
(c) -1 only
(d) $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
(e) $\frac{\pi}{2}$ only
(f) $-\frac{\pi}{2}$ only
(g) i and $-i$.
(h) $i \frac{\pi}{2}$ and $-i \frac{\pi}{2}$

Solution: The matrix is $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and we solve for the eigenvalues:

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right)=\lambda^{2}+1
$$

so $\lambda^{2}=-1$, thus $\lambda= \pm i$.
9. The number $\lambda=5$ is an eigenvalue of the matrix $A=\left(\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right)$. Find the value of h so that

$$
A\binom{-1}{h}=5\binom{-1}{h}
$$

Solution: The answer is $h=1$.

$$
(A-5 I \mid 0)=\left(\begin{array}{cc|c}
-3 & -3 & 0 \\
-3 & -3 & 0
\end{array}\right) \xrightarrow{R R E F}\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so $x_{1}+x_{2}=0$. This gives us $x_{1}=-x_{2}$ and x_{2} is free, and in parametric vector form

$$
\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{x_{2}}=x_{2}\binom{-1}{1} .
$$

10. Answer true or false to each of the following questions. In each case, A is a matrix whose entries are real numbers.
(a) Suppose that A is an $n \times n$ matrix and v is a nonzero vector in the null space of A. Then v is an eigenvector for A.
(b) Suppose that A is an $n \times n$ matrix and that u and v are eigenvectors of A. Then $u+v$ must be an eigenvector of A.

Solution:

(a) True. This emphasizes the fundamental fact that $\lambda=0$ is an eigenvalue of A if and only if $A v=0$ for some nonzero vector v, in which case v is an eigenvector corresponding to $\lambda=0$.
(b) False. For example, take $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Then $u=\binom{1}{0}$ and $v=\binom{0}{1}$ are eigenvectors of A but $u+v$ is not an eigenvector:

$$
A(u+v)=A\binom{1}{1}=\binom{1}{2}
$$

(The answer would have been "true" if u and v were further assumed to be different vectors in the same eigenspace)
11. Suppose A is a 4×4 matrix with characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(5-\lambda)(-5-\lambda)^{3}
$$

Which of the following are possible for the dimension of the (-5)-eigenspace? Select all that apply.
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Solution: Since $\lambda=-5$ is an eigenvalue and has algebraic multiplicity 3 , we know

$$
3 \geq \text { (geom. mult. of } \lambda=-5) \geq 1
$$

So (b), (c), and (d) are possible, but (a) and (e) are impossible.
12. Find all values of k so that the matrix $A=\left(\begin{array}{cc}-2 & k \\ 12 & 10\end{array}\right)$ has exactly one real eigenvalue with algebraic multiplicity 2.

Solution: This is \#4 from the 5.2 Webwork with some numbers changed. The characteristic polynomial is

$$
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-8 \lambda+(-20+12 k)
$$

In order for this to be a perfect square, we need it to equal

$$
(\lambda-4)^{2}=\lambda^{2}-8 \lambda+16
$$

so $16=-20+12 k$, and we find $k=-3$.
13. Find a basis for the (-2 -eigenspace of the matrix A below:

$$
A=\left(\begin{array}{ll}
-3 & 2 \\
-2 & 2
\end{array}\right)
$$

(a) $\left\{\binom{0}{0}\right\}$
(b) $\left\{\binom{1}{2}\right\}$
(c) $\left\{\binom{2}{1}\right\}$
(d) $\left\{\binom{2}{-1}\right\}$
(e) $\left\{\binom{-1}{2}\right\}$
(f) $\left\{\binom{1}{2},\binom{2}{1}\right\}$

Solution: This is a standard kind of problem we do often in chapter 5 (for a similar exercise, see \#2 from the 5.2 Webwork).

$$
(A+2 I \mid 0)=\left(\begin{array}{cc|c}
-1 & 2 & 0 \\
-2 & 4 & 0
\end{array}\right) \xrightarrow{R R E F}\left(\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so $x_{1}-2 x_{2}=0$. Thus $x_{1}=2 x_{2}$ and x_{2} is free. Therefore, the (-2)-eigenspace is spanned by $\binom{2}{1}$.
14. Answer true or false to each of the following questions. In each case, A is a matrix whose entries are real numbers.
(a) Suppose that A is a 5×5 matrix with eigenvalues $6,7,8$, and 9 , and that the 7 -eigenspace for A is a two-dimensional plane. Then A must be diagonalizable.
(b) Suppose A is an $n \times n$ matrix and $\lambda=6$ is an eigenvalue of A. Then the 6 -eigenspace of A must be a subspace of \mathbf{R}^{n}.

Solution:

(a) True: A is a 5×5 matrix and the sum of geometric multiplicities of its real eigenvalues is 5 , so A is diagonalizable.
(b) True. There are many ways to see this fundamental fact. One way is to note that the 6 -eigenspace of A is $\operatorname{Nul}(A-6 I)$, and the null space of an $n \times n$ matrix is automatically a subspace of \mathbf{R}^{n}.
15. Let A be the matrix which has the diagonalization below:

$$
A=\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & 4 & 1 \\
-2 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & 4 & 1 \\
-2 & 0 & 3
\end{array}\right)^{-1}
$$

Answer the following questions.
(a) Which of the following is a basis for the 2-eigenspace of A ?
i. $\left\{\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)\right\}$
ii. $\left\{\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right),\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)\right\}$
iii. $\left\{\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)\right\}$
iv. $\left\{\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right),\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)\right\}$
(b) Find $A^{35}\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$.
(i) $\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)$
(ii) $\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$
(iii) $\left(\begin{array}{c}(-2)^{35} \\ 1^{35} \\ 3^{25}\end{array}\right)$
(iv) $\left(\begin{array}{c}-2 \cdot 2^{35} \\ 2^{35} \\ 3 \cdot 2^{35}\end{array}\right)$

Solution: This problem is similar to many diagonalization problems from the 5.4 Webwork, class, and $\# 2$ from the 5.4-5.5 worksheet,, except that it has saved us from doing most of the work by diagonalizing the matrix for us. We have been given a diagonalization of A, so $A=C D C^{-1}$ where C is a matrix whose columns are eigenvectors of A and D is the diagonal matrix of corresponding vectors (written in matching order!).
(a) $\left\{\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right),\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)\right\}$. From the diagonalization of A, we see that the first two columns of C are a basis of the 2-eigenspace of A.
(b) $\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$ is an eigenvector in the (-1)-eigenspace of A, so

$$
A^{35}\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=(-1)^{35}\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=-\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right)
$$

16. Which of the following matrices are diagonalizable? Select all that apply.
(a) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Solution:

(a) Yes: the zero matrix is diagonalizable (in fact, diagonal!).
(b) No: A has exactly only one eigenvalue $\lambda=4$ with algebraic multiplicity 2 , but $A-4 I$ is $\left(\begin{array}{ll}0 & 4 \\ 0 & 0\end{array}\right)$, so the 4 -eigenspace only has geometric multiplicity 1.
(c) Yes: the 2×2 matrix has two distinct real eigenvalues and is therefore diagonalizable.
(d) Yes: the characteristic polynomial is $\lambda^{2}-1$, so it has $\lambda= \pm 1$ as eigenvalues and is diagonalizable by the same reasoning as (c).
17. Answer true or false to the following questions. In each case, A is a matrix whose entries are real numbers.
(a) If A is an $n \times n$ diagonal matrix, then A must be diagonalizable.
(b) Suppose A is an $n \times n$ matrix and $\lambda=2$ is an eigenvalue of A. Then there are infinitely many vectors v in \mathbf{R}^{n} that satisfy $A v=2 v$.

Solution:

(a) True: $A=I A I^{-1}$.
(b) True: Since 2 is an eigenvalue we know that $(A-2 I) v=0$ has a non-trivial solution and therefore has infinitely many solutions, so $A v=2 v$ has infinitely many solutions.
18. Let $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & h \\ 0 & 0 & h\end{array}\right)$. For which of the following values of h is A diagonalizable? Select all that apply.
(a) $h=0$
(b) $h=1$
(c) $h=-1$
(d) $h=2$

Solution:

(a) Yes. When $h=0$, the matrix is diagonal.
(b) No. When $h=1$, the 1-eigenspace has algebraic multiplicity 2 but geometric multiplicity 1.
(c) Yes. When $h=-1$, we see from the triangular form of A that A is a 3×3 matrix with 3 different real eigenvalues $2,1,-1$, thus A is diagonalizable.
(d) Yes. When $h=2$, the 2 -eigenspace is a plane because $A-2 I$ only has rank one. The 1-eigenspace has dimension at least one (thus exactly one), so the matrix A is diagonalizable.
19. One eigenvalue of the matrix $A=\left(\begin{array}{cc}1 & -4 \\ 1 & 1\end{array}\right)$ is $\lambda=1+2 i$.
(a) Which of the following is an eigenvector corresponding to the eigenvalue $\lambda=1+2 i$?
i. $\binom{-2 i}{1}$
ii. $\binom{4}{2-2 i}$
iii. $\binom{4}{2 i}$
iv. $\binom{-2 i}{4}$
v. $\binom{4}{-2 i}$
(b) What is the other eigenvalue of A ?
i. $1-2 i$
ii. $-1+2 i$
iii. $-2+i$
iv. $2-i$
v . There is no other eigenvalue of A, because $\lambda=1+2 i$ has algebraic multiplicity 2 .
vi. We need more information to determine what the second eigenvalue of A is.

Solution: Standard 5.5 example, similar to 5.5 Webwork \#2 and practice exam \#15.
(a) The answer is (v). The first row of $A-(1+2 i) I$ is $(-2 i-4)$, so one eigenvector is $\binom{4}{-2 i}$ by the 2×2 eigenvector trick.
(b) The answer is (i). The other eigenvalue of A is the complex conjugate of $1+2 i$, namely $\lambda=1-2 i$.
20. Suppose A is a 3×3 matrix whose entries are real numbers, and suppose that $\lambda=4-5 i$ is an eigenvalue for A. How many real eigenvalues does A have?
(a) A has no real eigenvalues.
(b) A has exactly one real eigenvalue.
(c) A has exactly 2 real eigenvalues.
(d) Not enough information to tell how many real eigenvalues A has.

Solution: The answer is (b). Similar to \#1a from the 5.4-5.5 worksheet and \#4 from the 5.5 Webwork. We know that every 3×3 real matrix A must have at least one real eigenvalue (odd degree polynomial). From what is given we know that it already has $4-5 i$ and (consequently) $4+5 i$ as two eigenvalues, so A cannot have more than one real eigenvalue. Therefore, A has exactly one real eigenvalue.

A similar but slightly alternative way to see it: Applying the Fundamental Theorem of Algebra to the characteristic polynomial of A, we are guaranteed that A has exactly 3 eigenvalues counting multiplicities. We know $4-5 i$ is an eigenvalue of A, therefore $4+5 i$ is automatically an eigenvalue of A by section 5.5. This leaves us with just one eigenvalue remaining. Since non-real eigenvalues come in complex conjugate pairs (so we cannot have an additional non-real eigenvalue or repeat one of our non-real eigenvalues), our final eigenvalue must be real, so A has exactly one real eigenvalue.
One such matrix is $A=\left(\begin{array}{ccc}11 & 2 & 0 \\ -37 & -3 & 0 \\ 0 & 0 & 1\end{array}\right)$, which has eigenvalues $\lambda=4 \pm 5 i$ and $\lambda=1$.

