Practice Midterm 3, Solutions

Solutions

1. The vector from $(1,0)$ to $(4,5)$ is $(3,5)$ and the vector from $(1,0)$ to $(1,-4)$ is $(0,-4)$. So the area of the triangle is

$$
\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{cc}
3 & 0 \\
5 & -4
\end{array}\right)\right|=\frac{1}{2}(12)=6 .
$$

2. (a) True, and in fact T is its own inverse.
(b) True. A variety of ways to see this. One way is to write the matrix A for T and note that it has a 3×3 matrix with 3 pivots, therefore A is invertible and T is invertible by the Invertible Matrix Theorem.
(c) True: The identity transformation is invertible.
3. We solve

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & c & -5 \\
1 & 3 & 7
\end{array}\right)=3 \\
7 c+15-4 c=3, \quad 3 c=-12, \quad c=-4
\end{gathered}
$$

4. A is 3×3 and $\operatorname{det}(A)=4$, so

$$
\operatorname{det}\left(-2 A^{-1}\right)=(-2)^{3} \operatorname{det}\left(A^{-1}\right)=(-8)(1 / 4)=-2
$$

5. We are told that A is 5×5 and $\operatorname{det}(A)=3$.
a) True. The columns of A form a basis for \mathbf{R}^{n}, since A is invertible.
b) True. The columns of A are linearly independent since A is invertible.
c) False. The rank of A is 5 since A is invertible.
d) True. The null space of A is just the zero vector, since $A x=0$ has only the trivial solution.
6. This problem comes from the 5.1 Supplement.
a) The correct answer is (III).
b) The correct answer is (III).
7. a) Since A has $\lambda=-1$ as an eigenvalue, the equation $(A+I) x=0$ has infinitely many solutions since $A x=-x$ has a non-trivial solution.
b) $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=3$, and to get the matrix below requires a row swap and multiplying a row by -2 , so

$$
\operatorname{det}\left(\begin{array}{cc}
-2 c & -2 d \\
a & b
\end{array}\right)_{1}=3(-1)(-2)=6
$$

8. $A=\left(\begin{array}{lll}7 & 4 & 4 \\ 4 & 7 & 4 \\ 0 & 0 & 4\end{array}\right)$ so

$$
(A-3 I \mid 0)=\left(\begin{array}{lll|l}
4 & 4 & 4 & 0 \\
4 & 4 & 4 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives $x_{1}+x_{2}=0, x_{2}$ free, and $x_{3}=0$, so a basis for the 3 -eigenspace is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$.
9. a) True. The matrix A gives counterclockwise rotation by 23°, which means that if $v \neq 0$, then v and $A v$ will not be on the same line through the origin. Therefore, A doesn't have any real eigenvalues.
b) True: u and v are eigenvectors for $\lambda=2$ and $u+v$ is not the zero vector, so $u+v$ is also a 2-eigenvector. You can see this by recalling that the 2-eigenspace is a subspace (thus closed under addition), or note

$$
A(u+v)=A u+A v=2 u+2 v=2(u+v) .
$$

10. Since $A=\left(\begin{array}{ll}1 & k \\ 1 & 3\end{array}\right)$, so its char. polynomial is

$$
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-4 \lambda+3-k
$$

This has one real eigenvalue of algebraic multiplicity 2 precisely when the polyomial is a square, so it equals

$$
(\lambda-2)^{2}=\lambda^{2}-4 \lambda+4
$$

thus $3-k=4$ so $k=-1$.
11. We expand the characteristic polynomial along the third row: $A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 3 & 1 \\ 0 & 0 & 1\end{array}\right)$ so

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 4 & -1 \\
2 & 3-\lambda & 1 \\
0 & 0 & 1-\lambda
\end{array}\right)=(-1)^{6}(1-\lambda)[(1-\lambda)(3-\lambda)-8] \\
& =(1-\lambda)\left(\lambda^{2}-4 \lambda-5\right)=(1-\lambda)(\lambda-5)(\lambda+1)
\end{aligned}
$$

The eigenvalues are $\lambda=-1, \lambda=1, \lambda=5$.
12. $A=\left(\begin{array}{ll}3 & -7 \\ 1 & -2\end{array}\right)$ so

$$
A^{-1}=\frac{1}{3(-2)-(-7)(1)}\left(\begin{array}{ll}
-2 & 7 \\
-1 & 3
\end{array}\right)=\left(\begin{array}{ll}
-2 & 7 \\
-1 & 3
\end{array}\right) .
$$

13. a) $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is not diagonalizable.

Its only eigenvalue is $\lambda=1$, but $\operatorname{Nul}(A-I)$ gives only two free variables, so the 1 -eigenspace only has dimension 2 .
b) Yes, B is a 2×2 matrix with two real eigenvalues $\lambda=1$ and $\lambda=-1$, so B is diagonalizable.
14. Since $\binom{4}{1}$ is in the 1 -eigenspace and $\binom{3}{2}$ is in the 2 -eigenspace, we get

$$
A\left(\binom{4}{1}+\binom{3}{2}\right)=A\binom{4}{1}+A\binom{3}{2}=\binom{4}{1}+2\binom{3}{2}=\binom{10}{5}
$$

So $k=5$.
15. We are told the 2×2 matrix A has eigenvalue $\lambda_{1}=-2+i \sqrt{5}$ and corresponding eigenvector $\binom{10}{-5-i \sqrt{5}}$.
a) Complex eigenvalues come in complex conjugate pairs, so $\lambda_{2}=-2-i \sqrt{5}$ is its other eigenvalue.
b) We get an eigenvector for $\lambda=2$ by taking the complex conjugate of each entry of the eigenvector for λ_{1}, which gives us $\binom{10}{-5+i \sqrt{5}}$.
16. a) True. If $A=C D C^{-1}$ and A is invertible then so are all three matrices on the right side of the equation, and

$$
A^{-1}=\left(C D C^{-1}\right)^{-1}=\left(C^{-1}\right)^{-1} D^{-1} C^{-1}=C D^{-1} C^{-1} .
$$

b) True:

$$
\operatorname{det}(A)=\operatorname{det}\left(C D C^{-1}\right)=\operatorname{det}(C) \operatorname{det}(D) \operatorname{det}\left(C^{-1}\right)=\operatorname{det}(C) \operatorname{det}(D) \frac{1}{\operatorname{det}(C)}=\operatorname{det}(D) .
$$

17. The matrix for T is $A=\left(\begin{array}{ccc}k & 0 & 0 \\ 0 & k^{2} & 0 \\ 0 & 0 & k^{3}\end{array}\right)$, so the volume of $T(S)$ is

$$
\operatorname{det}(A) \operatorname{Vol}(S)=k^{6}(2021)=2021 k^{6} .
$$

18. Here, A is the 2×2 matrix whose 2 -eigenspace is the line $x_{2}=3 x_{1}$ and whose null space is the line $x_{2}=-x_{1}$. Therefore, the eigenvalues of A are $\lambda_{1}=2$ and $\lambda_{2}=0$, and corresponding eigenvectors are $v_{1}=\binom{1}{3}$ and $v_{2}=\binom{-1}{1}$.

Therefore, by the Diagonalization Theorem we have $A=C D C^{-1}$ where

$$
C=\left(\begin{array}{cc}
1 & -1 \\
3 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

19. a) True. If A is 7×7 then it must have at least one real eigenvalue. Since (nonreal) complex eigenvalues (and their powers) come in conjugate pairs, only an "even" \times "even" matrix A can have no real eigenvalues.

Alternatively: since $\operatorname{det}(A-\lambda I)$ is a degree 7 polynomial, it has at least one real root just due to a precalculus argument using end-behavior and continuity of polynomial functions.
b) True. If A is 4×4 and if i and $3 i$ are eigenvalues of A, then so are $-i$ and $-3 i$, so none of the four eigenvalues of A are real numbers.
20. Here, $A=\left(\begin{array}{ll}3 & c \\ 2 & 1\end{array}\right)$ and we need $\lambda=2$ to be an eigenvalue. This is the same as $A-2 I$ is not invertible. We row-reduce

$$
(A-2 I \mid 0)=\left(\begin{array}{rr|r}
1 & c & 0 \\
2 & -1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{rr|r}
1 & c & 0 \\
0 & -1-2 c & 0
\end{array}\right)
$$

Since $A-2 I$ is not invertible, we have $-1-2 c=0$, so $c=-1 / 2$. Alternatively, we could have solved for $\operatorname{det}(A-2 I)=0$ and found $c=-1 / 2$.

