Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.

a) Write the importance matrix and the Google matrix for this internet using damping constant $p=0.15$. You don't need to simplify the Google matrix.
b) The steady-state vector for the Google matrix is (approximately)

$$
\left(\begin{array}{l}
0.23 \\
0.23 \\
0.23 \\
0.31
\end{array}\right)
$$

What is the top-ranked page?
2. The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:

- X keeps 75% of its customers, while losing 15% to Y and 10% to Z .
- Y keeps 60% of its customers, while losing 5% to X and 35% to Z .
- Z keeps 65% of its customers, while losing 15% to X and 20% to Y .

Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute $A x$.
3. Suppose p and q are real numbers on the open interval $(0,1)$, and

$$
A=\left(\begin{array}{cc}
p & 1-q \\
1-p & q
\end{array}\right)
$$

(1) Is A a positive stochastic matrix? Why?
(2) Does A have unique steady state vector? Why?
(3) Without computation, give an eigenvalue of A.
(4) Compute the steady-state vector of A.

Supplemental problems: Chapter 6

1. True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
a) Suppose $W=\operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
b) Suppose W is a subspace of \mathbf{R}^{n} and x is a vector in \mathbf{R}^{n}. If x is not in W, then $x-x_{W}$ is not zero.
c) Suppose W is a subspace of \mathbf{R}^{n} and x is in both W and W^{\perp}. Then $x=0$.
d) Suppose \hat{x} is a least squares solution to $A x=b$. Then \hat{x} is the closest vector to b in the column space of A.
2. Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
a) Find the closest point w in W to $x=\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.
b) Find the distance from w to $\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.
c) Find the standard matrix for the orthogonal projection onto $\operatorname{Span}\left\{v_{1}\right\}$.
d) Find the standard matrix for the orthogonal projection onto W.
3. Find the least-squares line $y=M x+B$ that approximates the data points

$$
(-2,-11), \quad(0,-2), \quad(4,2) .
$$

