Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.

a) Write the importance matrix and the Google matrix for this internet using damping constant $p=0.15$. You don't need to simplify the Google matrix.
b) The steady-state vector for the Google matrix is (approximately)

$$
\left(\begin{array}{l}
0.23 \\
0.23 \\
0.23 \\
0.31
\end{array}\right)
$$

What is the top-ranked page?

Solution.

(a) The importance matrix is

$$
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 0 & 0
\end{array}\right)
$$

The Google matrix is

$$
0.85\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 0 & 0
\end{array}\right)+(0.15) \frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) .
$$

(b) From the steady-state vector we see page 4 has the highest rank.
2. The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:

- X keeps 75% of its customers, while losing 15% to Y and 10% to Z .
- Y keeps 60% of its customers, while losing 5% to X and 35% to Z .
- Z keeps 65% of its customers, while losing 15% to X and 20% to Y .

Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute $A x$.

Solution.

$$
A=\left(\begin{array}{ccc}
0.75 & 0.05 & 0.15 \\
0.15 & 0.6 & 0.20 \\
0.1 & 0.35 & 0.65
\end{array}\right) \quad x=\left(\begin{array}{l}
40 \\
15 \\
20
\end{array}\right) .
$$

3. Suppose p and q are real numbers on the open interval $(0,1)$, and

$$
A=\left(\begin{array}{cc}
p & 1-q \\
1-p & q
\end{array}\right)
$$

(1) Is A a positive stochastic matrix? Why?
(2) Does A have unique steady state vector? Why?
(3) Without computation, give an eigenvalue of A.
(4) Compute the steady-state vector of A.

Solution.

(1) Yes: columns sum to 1 , all entries strictly positive
(2) Yes: A is a positive stochastic matrix, so the Perron-Frobenius theorem applies.
(3) $\lambda=1$
(4) Solving $(A-I) v=0$ and scaling v to get the steady-state vector w, we get

$$
w=\frac{1}{2-p-q}\binom{1-q}{1-p} .
$$

Supplemental problems: Chapter 6

1. True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
a) Suppose $W=\operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
b) Suppose W is a subspace of \mathbf{R}^{n} and x is a vector in \mathbf{R}^{n}. If x is not in W, then $x-x_{W}$ is not zero.
c) Suppose W is a subspace of \mathbf{R}^{n} and x is in both W and W^{\perp}. Then $x=0$.
d) Suppose \widehat{x} is a least squares solution to $A x=b$. Then \widehat{x} is the closest vector to b in the column space of A.

Solution.

a) True. Since $v \in W^{\perp}$, its projection onto W is zero.
b) True. If x is not in W then $x \neq x_{W}$, so $x-x_{W}$ is not zero.
c) True. Since x is in W and W^{\perp} it is orthogonal to itself, so $\|x\|^{2}=x \cdot x=0$. The length of x is zero, which means every entry of x is zero, hence $x=0$.
d) False: $A \widehat{x}$ is the closest vector to b in $\operatorname{Col} A$.
2. Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
a) Find the closest point w in W to $x=\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.

Let $A=\left(\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right)$. We solve $A^{T} A v=A^{T} x$.

$$
A^{T} A=\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right) \quad A^{T}\left(\begin{array}{c}
0 \\
14 \\
-4
\end{array}\right)=\binom{24}{16} .
$$

We find $\left(\begin{array}{rr|r}6 & 6 & 24 \\ 6 & 14 & 16\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{rr|r}1 & 0 & 5 \\ 0 & 1 & -1\end{array}\right)$, so $v=\binom{5}{-1}$ and therefore

$$
w=A v=\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\binom{5}{-1}=\left(\begin{array}{c}
-6 \\
8 \\
2
\end{array}\right) .
$$

b) Find the distance from w to $\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.

$$
\|x-w\|=\left\|\left(\begin{array}{c}
0 \\
14 \\
-4
\end{array}\right)-\left(\begin{array}{c}
-6 \\
8 \\
2
\end{array}\right)\right\|=\left\|\left(\begin{array}{c}
6 \\
6 \\
-6
\end{array}\right)\right\|=\sqrt{36+36+36}=\sqrt{108}=6 \sqrt{3} .
$$

c) Find the standard matrix for the orthogonal projection onto $\operatorname{Span}\left\{v_{1}\right\}$.

$$
B=\frac{1}{v_{1} \cdot v_{1}} v_{1} v_{1}^{T}=\frac{1}{(-1)^{2}+2^{2}+1^{2}}\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)\left(\begin{array}{lll}
-1 & 2 & 1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right)
$$

d) Find the standard matrix for the orthogonal projection onto W.

Let $A=\left(\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right)$. Since the columns of A are linearly independent, our projection matrix is $A\left(A^{T} A\right)^{-1} A^{T}$. We already computed $A^{T} A$ in part (a), so our matrix is

$$
\begin{aligned}
A\left(A^{T} A\right)^{-1} A^{T} & =\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right)^{-1}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right)^{-1}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right) \\
& =\frac{1}{48}\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
14 & -6 \\
-6 & 6
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

3. Find the least-squares line $y=M x+B$ that approximates the data points

$$
(-2,-11), \quad(0,-2), \quad(4,2)
$$

Solution.

If there were a line through the three data points, we would have:

$$
\begin{array}{cc}
(x=-2) & B+M(-2)=-11 \\
(x=0) & B+M(0)=-2 \\
(x=4) & B+M(4)=2 .
\end{array}
$$

This is the matrix equation $\left(\begin{array}{cc}1 & -2 \\ 1 & 0 \\ 1 & 4\end{array}\right)\binom{B}{M}=\left(\begin{array}{c}-11 \\ -2 \\ 2\end{array}\right)$.

Thus, we are solving the least-squares problem to $A v=b$, where

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 4
\end{array}\right) \quad b=\left(\begin{array}{c}
-11 \\
-2 \\
2
\end{array}\right)
$$

We solve $A^{T} A \widehat{x}=A^{T} b$, where $\widehat{x}=\binom{B}{M}$.

$$
\begin{gathered}
A^{T} A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 4
\end{array}\right)=\left(\begin{array}{cc}
3 & 2 \\
2 & 20
\end{array}\right), \\
A^{T} b=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & 4
\end{array}\right)\left(\begin{array}{c}
-11 \\
-2 \\
2
\end{array}\right)=\binom{-11}{30} .
\end{gathered}
$$

$\left(\begin{array}{rr|r}3 & 2 & -11 \\ 2 & 20 & 30\end{array}\right) \xrightarrow{R_{1} \hookleftarrow R_{2}}\left(\begin{array}{rr|r}2 & 20 & 30 \\ 3 & 2 & -11\end{array}\right) \xrightarrow[R_{1}=R_{1} / 2]{R_{2}=R_{2}-\frac{3 R_{1}}{2}}\left(\begin{array}{rr|r}1 & 10 & 15 \\ 0 & -28 & -56\end{array}\right) \xrightarrow[R_{1}=R_{1}-10 R_{2}]{R_{2}=-\frac{R_{2}}{28}}\left(\begin{array}{rr|r}1 & 0 & -5 \\ 0 & 1 & 2\end{array}\right)$.
So $\widehat{x}=\binom{-5}{2}$. In other words, $y=-5+2 x$, or $y=2 x-5$.

