Supplemental problems: Chapter 4, Determinants

1. If *A* is an $n \times n$ matrix, is it necessarily true that det(-A) = -det(A)? Justify your answer.

Solution.

No. Since $det(cA) = c^n det(A)$, we see $det(-A) = (-1)^n det(A)$, so det(-A) = det(A) if *n* is even and det(-A) = -det(A) if *n* is odd.

- **2.** Let *A* be an $n \times n$ matrix.
 - a) Using cofactor expansion, explain why det(*A*) = 0 if *A* has a row or a column of zeros.
 - **b)** Using cofactor expansion, explain why det(A) = 0 if A has adjacent identical columns.

Solution.

a) If *A* has zeros for all entries in row *i* (so $a_{i1} = a_{i2} = \cdots = a_{in} = 0$), then the cofactor expansion along row *i* is

 $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = 0 \cdot C_{i1} + 0 \cdot C_{i2} + \dots + 0 \cdot C_{in} = 0.$

Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0.

b) If *A* has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for det(*A*) will have plus signs where the other expansion's terms for det(*A*) have minus signs (due to the $(-1)^{\text{power}}$ factors) and vice versa.

Therefore, det(A) = -det(A), so det A = 0.

3. Find the volume of the parallelepiped in \mathbf{R}^4 naturally determined by the vectors

(4)		(0)		(0)		(5)	
1		7		2		-5	
3	,	0	,	0	,	0	ŀ
(8)		(3)		(1)		(7)	

Solution.

We put the vectors as columns of a matrix A and find $|\det(A)|$. For this, we expand $\det(A)$ along the third row because it only has one nonzero entry.

$$\det(A) = 3(-1)^{3+1} \cdot \det\begin{pmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{pmatrix} = 3 \cdot 5(-1)^{1+3} \det\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = 3(5)(1)(7-6) = 15.$$

(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)

The volume is $|\det(A)| = |15| = 15$.

4. Let $A = \begin{pmatrix} -1 & 1 \\ 1 & 7 \end{pmatrix}$, and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax. Find the area of T(S), if *S* is a triangle in \mathbb{R}^2 with area 2.

Solution.

 $|\det(A)|\operatorname{Vol}(S) = |-7-1| \cdot 2 = 16.$

5. Let

$$A = \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 & 5 & 4 \\ 1 & -1 & -3 & 0 \\ -1 & 0 & 5 & 4 \\ 3 & -3 & -2 & 5 \end{pmatrix}$$

- a) Compute det(*A*).
- **b)** Compute det(*B*).
- c) Compute det(*AB*).
- **d)** Compute det($A^2B^{-1}AB^2$).

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$\det \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix} = -\det \begin{pmatrix} -1 & 0 & 6 \\ 9 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

Now we expand the second column by cofactors again:

$$\cdots = -2 \det \begin{pmatrix} -1 & 6 \\ 0 & -1 \end{pmatrix} = (-2)(-1)(-1) = -2.$$

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix

$$\begin{pmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$

The determinant of this matrix is -21, so the determinant of the original matrix is 21.

- c) $\det(AB) = \det(A) \det(B) = (-2)(21) = -42.$
- d) $\det(A^2B^{-1}AB^2) = \det(A)^2 \det(B)^{-1} \det(A) \det(B)^2 = \det(A)^3 \det(B) = (-2)^3(21) = -168.$

6. If *A* is a 3×3 matrix and det(*A*) = 1, what is det(-2A)?

Solution.

By determinant properties, scaling one row by *c* multiplies the determinant by *c*. When we take *cA* for an $n \times n$ matrix *A*, we are multiplying *each* row by *c*. This multiplies the determinant by *c* a total of *n* times.

Thus, if *A* is $n \times n$, then det(*cA*) = c^n det(*A*). Here n = 3, so

$$\det(-2A) = (-2)^3 \det(A) = -8 \det(A) = -8.$$

a) Is there a real 2 × 2 matrix A that satisfies A⁴ = -I₂? Either write such an A, or show that no such A exists.

(hint: think geometrically! The matrix $-I_2$ represents rotation by π radians).

b) Is there a real 3×3 matrix *A* that satisfies $A^4 = -I_3$? Either write such an *A*, or show that no such *A* exists.

Solution.

a) Yes. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Then A^2 gives rotation c.c. by $\frac{\pi}{2}$ radians, A^3 gives rotation c.c. by $\frac{3\pi}{4}$ radians, and A^4 gives rotation c.c. by π radians, which has matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2$.

b) No. If $A^4 = -I$ then

$$[\det(A)]^4 = \det(A^4) = \det(-I) = (-1)^3 = -1.$$

In other words, if $A^4 = -I$ then $[\det(A)]^4 = -1$, which is impossible since $\det(A)$ is a real number.

Similarly, $A^4 = -I$ is impossible if *A* is 5×5 , 7×7 , etc.