Supplemental problems: Chapter 4, Determinants

1. If A is an $n \times n$ matrix, is it necessarily true that $\operatorname{det}(-A)=-\operatorname{det}(A)$? Justify your answer.

Solution.

No. Since $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$, we see $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$, so $\operatorname{det}(-A)=\operatorname{det}(A)$ if n is even and $\operatorname{det}(-A)=-\operatorname{det}(A)$ if n is odd.
2. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.

Solution.

a) If A has zeros for all entries in row i (so $a_{i 1}=a_{i 2}=\cdots=a_{i n}=0$), then the cofactor expansion along row i is $\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}=0 \cdot C_{i 1}+0 \cdot C_{i 2}+\cdots+0 \cdot C_{i n}=0$.
Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0 .
b) If A has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for $\operatorname{det}(A)$ will have plus signs where the other expansion's terms for $\operatorname{det}(A)$ have minus signs (due to the $(-1)^{\text {power }}$ factors) and vice versa.

Therefore, $\operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det} A=0$.
3. Find the volume of the parallelepiped in \mathbf{R}^{4} naturally determined by the vectors

$$
\left(\begin{array}{l}
4 \\
1 \\
3 \\
8
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
7 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
-5 \\
0 \\
7
\end{array}\right)
$$

Solution.

We put the vectors as columns of a matrix A and find $|\operatorname{det}(A)|$. For this, we expand $\operatorname{det}(A)$ along the third row because it only has one nonzero entry.
$\operatorname{det}(A)=3(-1)^{3+1} \cdot \operatorname{det}\left(\begin{array}{ccc}0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7\end{array}\right)=3 \cdot 5(-1)^{1+3} \operatorname{det}\left(\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right)=3(5)(1)(7-6)=15$.
(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)

The volume is $|\operatorname{det}(A)|=|15|=15$.
4. Let $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & 7\end{array}\right)$, and define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=A x$. Find the area of $T(S)$, if S is a triangle in \mathbf{R}^{2} with area 2.

Solution.

$|\operatorname{det}(A)| \operatorname{Vol}(S)=|-7-1| \cdot 2=16$.
5. Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}(B)$.
c) Compute $\operatorname{det}(A B)$.
d) Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$
\operatorname{det}\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)=-\operatorname{det}\left(\begin{array}{rrr}
-1 & 0 & 6 \\
9 & 2 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

Now we expand the second column by cofactors again:

$$
\cdots=-2 \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & -1
\end{array}\right)=(-2)(-1)(-1)=-2 .
$$

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -3 & 0 \\
0 & 1 & 5 & 4 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

The determinant of this matrix is -21 , so the determinant of the original matrix is 21 .
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=(-2)(21)=-42$.
d) $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)=\operatorname{det}(A)^{2} \operatorname{det}(B)^{-1} \operatorname{det}(A) \operatorname{det}(B)^{2}=\operatorname{det}(A)^{3} \operatorname{det}(B)=(-2)^{3}(21)=$ -168 .
6. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(-2 A)$?

Solution.

By determinant properties, scaling one row by c multiplies the determinant by c. When we take $c A$ for an $n \times n$ matrix A, we are multiplying each row by c. This multiplies the determinant by c a total of n times.

Thus, if A is $n \times n$, then $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Here $n=3$, so

$$
\operatorname{det}(-2 A)=(-2)^{3} \operatorname{det}(A)=-8 \operatorname{det}(A)=-8
$$

7. a) Is there a real 2×2 matrix A that satisfies $A^{4}=-I_{2}$? Either write such an A, or show that no such A exists.
(hint: think geometrically! The matrix $-I_{2}$ represents rotation by π radians).
b) Is there a real 3×3 matrix A that satisfies $A^{4}=-I_{3}$? Either write such an A, or show that no such A exists.

Solution.

a) Yes. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Then A^{2} gives rotation c.c. by $\frac{\pi}{2}$ radians, A^{3} gives rotation c.c. by $\frac{3 \pi}{4}$ radians, and A^{4} gives rotation c.c. by π radians, which has matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=-I_{2}$.
b) No. If $A^{4}=-I$ then

$$
[\operatorname{det}(A)]^{4}=\operatorname{det}\left(A^{4}\right)=\operatorname{det}(-I)=(-1)^{3}=-1
$$

In other words, if $A^{4}=-I$ then $[\operatorname{det}(A)]^{4}=-1$, which is impossible since $\operatorname{det}(A)$ is a real number.

Similarly, $A^{4}=-I$ is impossible if A is $5 \times 5,7 \times 7$, etc.

