Chapter 2

Systems of Linear Equations: Algebra

Section 2.1

Systems of Linear Equations

Line, Plane, Space, ...

Recall that **R** denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0,-1,\pi,\frac{3}{2},\ldots$

Definition

Let n be a positive whole number. We define

$$\mathbf{R}^n$$
 = all ordered *n*-tuples of real numbers $(x_1, x_2, x_3, \dots, x_n)$.

Example

When n=1, we just get **R** back: $\mathbf{R}^1=\mathbf{R}$. Geometrically, this is the *number line*.

Line, Plane, Space, ...

Example

When n=2, we can think of ${\bf R}^2$ as the *plane*. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its *x*-and *y*-coordinates.

We can use the elements of \mathbf{R}^2 to *label* points on the plane, but \mathbf{R}^2 is not defined to be the plane!

Line, Plane, Space, ... Continued

Example

When n=3, we can think of ${\bf R}^3$ as the *space* we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its x-, y-, and z-coordinates.

Again, we can use the elements of \mathbf{R}^3 to *label* points in space, but \mathbf{R}^3 is not defined to be space!

Line, Plane, Space, ...

Example

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. So we could also think of \mathbb{R}^3 as the space of all *colors*:

$$\mathbf{R}^3 = \text{all colors } (r, g, b).$$

Again, we can use the elements of \mathbf{R}^3 to *label* the colors, but \mathbf{R}^3 is not defined to be the space of all colors!

Line, Plane, Space,

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

 \dots go back to the *definition*: ordered *n*-tuples of real numbers

$$(x_1, x_2, x_3, \ldots, x_n).$$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

Last time we could have used \mathbf{R}^4 to label the amount of traffic (x, y, z, w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbf{R}^n , but we'll only draw pictures for \mathbf{R}^2 and \mathbf{R}^3 .

One Linear Equation

What does the solution set of a linear equation look like?

x + y = 1 www a line in the plane: y = 1 - xThis is called the **implicit equation** of the line.

We can write the same line in parametric form in \mathbf{R}^2 :

$$(x, y) = (t, 1-t)$$
 t in **R**.

This means that every point on the line has the form (t, 1-t) for some real number t.

Aside

What is a line? A ray that is *straight* and infinite in both directions.

One Linear Equation Continued

What does the solution set of a linear equation look like?

x + y + z = 1 www a plane in space: This is the **implicit equation** of the plane.

[interactive]

Does this plane have a parametric form?

$$(x, y, z) = (t, w, 1 - t - w)$$
 t, w in **R**.

Note: we are *labeling* the points on the plane by elements (t, w) in \mathbb{R}^2 .

Aside

What is a plane? A flat sheet of paper that's infinite in all directions.

One Linear Equation Continued

What does the solution set of a linear equation look like?

$$x + y + z + w = 1$$
 \longrightarrow a "3-plane" in "4-space"... [not pictured here]

Is the plane from the previous example equal to \mathbb{R}^2 ?

No! Every point on this plane is in ${\bf R}^3$: that means it has three coordinates. For instance, (1,0,0). Every point in ${\bf R}^2$ has two coordinates. But we can *label* the points on the plane by ${\bf R}^2$.

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

$$x - 3y = -3$$
$$2x + y = 8$$

... is the *intersection* of two lines, which is a *point* in this case.

In general it's an intersection of lines, planes, etc.

[two planes intersecting]

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$x - 3y = 3$$

has no solution: the lines are parallel.

A system of equations with no solutions is called **inconsistent**.

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$2x - 6y = -6$$

has infinitely many solutions: they are the *same line*.

Note that multiplying an equation by a nonzero number gives the *same* solution set. In other words, they are equivalent (systems of) equations.

Summary

- ightharpoonup
 igh
- ▶ **R**ⁿ can be used to label geometric objects, like **R**² can label points in the plane.
- The solutions of a system equations look like an intersection of lines, planes, etc.
- Finding all the solutions means finding a parametric form of the system of equations.