Math 1553 Supplement §6.4, 6.5

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

1. a) If A is the matrix that implements rotation by 143° in \mathbf{R}^{2}, then A has no real eigenvalues.
b) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
c) A 3×3 (real) matrix can have eigenvalues 3,5 , and $2+i$.
2. Let $A=\left(\begin{array}{rrr}8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33\end{array}\right)$.

The characteristic polynomial for A is $-\lambda^{3}+7 \lambda^{2}-16 \lambda+12$, and $\lambda-3$ is a factor. Decide if A is diagonalizable. If it is, find an invertible matrix C and a diagonal matrix D such that $A=C D C^{-1}$.
3. Give examples of 2×2 matrices with the following properties. Justify your answers.
a) A matrix A which is invertible and diagonalizable.
b) A matrix B which is invertible but not diagonalizable.
c) A matrix C which is not invertible but is diagonalizable.
d) A matrix D which is neither invertible nor diagonalizable.
4. $\operatorname{Let} A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$. Find all eigenvalues of A. For each eigenvalue, find an associated eigenvector.
5. Suppose a 2×2 matrix A has eigenvalue $\lambda_{1}=-2$ with eigenvector $v_{1}=\binom{3 / 2}{1}$, and eigenvalue $\lambda_{2}=-1$ with eigenvector $v_{2}=\binom{1}{-1}$.
a) Find A.
b) Find A^{100}.

