Math 1553 Supplement §4.5, 5.1-5.3

1. a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of $A B$ is \qquad .
b) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
c) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, does $A x=0$ necessarily have a unique solution? Justify your answer.
2. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.
3. Find the volume of the parallelepiped in \mathbf{R}^{4} naturally determined by the vectors

$$
\left(\begin{array}{l}
4 \\
1 \\
3 \\
8
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
7 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
-5 \\
0 \\
7
\end{array}\right)
$$

4. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(-2 A)$?
5. a) Is there a real 2×2 matrix A that satisfies $A^{4}=-I_{2}$? Either write such an A, or show that no such A exists.
(hint: think geometrically! The matrix $-I_{2}$ represents rotation by π radians).
b) Is there a real 3×3 matrix A that satisfies $A^{4}=-I_{3}$? Either write such an A, or show that no such A exists.
