Math 1553 Supplement §4.5, 5.1-5.3

- **1. a)** Fill in: *A* and *B* are invertible *n*×*n* matrices, then the inverse of *AB* is ______.
 - **b)** If the columns of an $n \times n$ matrix *Z* are linearly independent, is *Z* necessarily invertible? Justify your answer.
 - c) If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, does Ax = 0 necessarily have a unique solution? Justify your answer.
- **2.** Let *A* be an $n \times n$ matrix.
 - a) Using cofactor expansion, explain why det(A) = 0 if A has a row or a column of zeros.
 - **b)** Using cofactor expansion, explain why det(A) = 0 if A has adjacent identical columns.
- **3.** Find the volume of the parallelepiped in \mathbf{R}^4 naturally determined by the vectors

$$\begin{pmatrix} 4 \\ 1 \\ 3 \\ 8 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 7 \\ 0 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ -5 \\ 0 \\ 7 \end{pmatrix}.$$

- **4.** If *A* is a 3×3 matrix and det(*A*) = 1, what is det(-2A)?
- a) Is there a real 2 × 2 matrix *A* that satisfies A⁴ = -I₂? Either write such an *A*, or show that no such *A* exists.
 (hint: think geometrically! The matrix -I₂ represents rotation by *π* radians).
 - **b)** Is there a real 3×3 matrix *A* that satisfies $A^4 = -I_3$? Either write such an *A*, or show that no such *A* exists.