Math 1553 Supplement §4.2, 4.3

1. Let A be a 3×4 matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$, and suppose $v_{2}=2 v_{1}-3 v_{4}$. Consider the matrix transformation $T(x)=A x$.
a) Is it possible that T is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that $T(v)=T(w)$.
b) Is it possible that T is onto? Justify your answer.
2. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(y, y)$.
 given by $T(f)=f^{\prime}$ (the derivative of f). Then T is not a transformation from any \mathbf{R}^{n} to \mathbf{R}^{m}, but it is still linear in the sense that for all smooth f and g and all scalars c (by properties of differentiation we learned in Calculus 1):

$$
\begin{gathered}
T(f+g)=T(f)+T(g) \quad \text { since }(f+g)^{\prime}=f^{\prime}+g^{\prime} \\
T(c f)=c T(f) \quad \text { since }(c f)^{\prime}=c f^{\prime}
\end{gathered}
$$

Is T one-to-one?
3. In each case, determine whether T is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.
4. For each matrix A, describe what the associated matrix transformation T does to \mathbf{R}^{3} geometrically.

$$
\text { a) }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { b) }\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

5. Let's go back to the 4.2-4.3 worksheet problem \#3. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0,0,0),(2,0,0),(0,2,0)$, and $(1,1,1)$.

The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis (look downward onto the $x y$-plane the way we usually picture the plane as \mathbf{R}^{2}), and then projected onto the $x y$-plane.

In the worksheet, we found the matrix for the transformation T caused by the wolf. Geometrically describe the image of the house under T.

