Section 7.2

Orthogonal Complements

Orthogonal Complements

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \left\{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\}$$
 read "W perp".
$$W^{\perp} \text{ is orthogonal complement}$$

$$A^T \text{ is transpose}$$

Pictures:

The orthogonal complement of a line in ${\bf R}^2$ is the perpendicular line. [interactive]

The orthogonal complement of a line in ${\bf R}^3$ is the perpendicular plane. [interactive]

The orthogonal complement of a plane in ${\bf R}^3$ is the perpendicular line. [interactive]

Poll

Let W be a 2-plane in \mathbb{R}^4 . How would you describe W^{\perp} ?

- A. The zero space $\{0\}$.
- B. A line in \mathbb{R}^4 .
- C. A plane in R⁴.
 - D. A 3-dimensional space in \mathbb{R}^4 .
 - E. All of \mathbb{R}^4 .

For example, if W is the xy-plane, then W^{\perp} is the zw-plane:

$$\begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ z \\ w \end{pmatrix} = 0.$$

Let W be a subspace of \mathbf{R}^n .

Facts:

- 1. W^{\perp} is also a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{v_1, v_2, ..., v_m\}$, then

$$W^{\perp} = \text{all vectors orthogonal to each } v_1, v_2, \dots, v_m$$

$$= \left\{ x \text{ in } \mathbf{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \dots, m \right\}$$

$$= \text{Nul} \begin{pmatrix} \mathbf{-} v_1^T \mathbf{-} \\ \mathbf{-} v_2^T \mathbf{-} \\ \vdots \\ \mathbf{-} v^T \mathbf{-} \end{pmatrix}.$$

Let's check 1

- ▶ Is 0 in W^{\perp} ? Yes: $0 \cdot w = 0$ for any w in W.
- ▶ Suppose x, y are in W^{\perp} . So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W. Then $(x + y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$ for all w in W. So x + y is also in W^{\perp} .
- ▶ Suppose x is in W^{\perp} . So $x \cdot w = 0$ for all w in W. If c is a scalar, then $(cx) \cdot w = c(x \cdot 0) = c(0) = 0$ for any w in W. So cx is in W^{\perp} .

Orthogonal Complements

Computation

Problem: if
$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
, compute W^{\perp} .

By property 4, we have to find the null space of the matrix whose rows are $\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, which we did before:

$$\operatorname{\mathsf{Nul}} \left(\begin{matrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{matrix} \right) = \operatorname{\mathsf{Span}} \left\{ \left(\begin{matrix} -1 \\ 1 \\ 0 \end{matrix} \right) \right\}.$$

[interactive]

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

Definition

The **row space** of an $m \times n$ matrix A is the span of the **rows** of A. It is denoted Row A. Equivalently, it is the column space of A^T :

$$Row A = Col A^T$$
.

It is a subspace of \mathbf{R}^n .

We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\,\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: $(\text{Nul } A)^{\perp} = \text{Row } A \text{ and } \text{Col } A = (\text{Nul } A^{\top})^{\perp}.$

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

For any matrix A:

$$Row A = Col A^{T}$$
and

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \qquad \operatorname{Row} A = (\operatorname{Nul} A)^{\perp}$$
 $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T} \qquad \operatorname{Col} A = (\operatorname{Nul} A^{T})^{\perp}$

For any other subspace W, first find a basis v_1,\ldots,v_m , then use the above trick to compute $W^\perp=\operatorname{Span}\{v_1,\ldots,v_m\}^\perp$.

Section 7.3

Orthogonal Projections

Best Approximation

Suppose you measure a data point ${\it x}$ which you know for theoretical reasons must lie on a subspace ${\it W}$.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the *orthogonal complement* W^{\perp} .

Orthogonal Decomposition

Theorem

Every vector x in \mathbf{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the **orthogonal projection** of x onto W.

The vector x_W is the closest vector to x on W.

[interactive 1] [interactive 2]

Theorem

Every vector x in \mathbb{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

Why?

Uniqueness: suppose $x=x_W+x_{W^{\perp}}=x_W'+x_{W^{\perp}}'$ for x_W,x_W' in W and $x_{W^{\perp}},x_{W^{\perp}}'$ in W^{\perp} . Rewrite:

$$x_W - x_W' = x_{W^{\perp}}' - x_{W^{\perp}}.$$

The left side is in W, and the right side is in W^{\perp} , so they are both in $W \cap W^{\perp}$. But the only vector that is perpendicular to itself is the zero vector! Hence

$$0 = x_W - x'_W \implies x_W = x'_W$$
$$0 = x_{W^{\perp}} - x'_{W^{\perp}} \implies x_{W^{\perp}} = x'_{W^{\perp}}$$

Existence: We will compute the orthogonal decomposition later using orthogonal projections.

Orthogonal Decomposition Example

Let W be the xy-plane in \mathbb{R}^3 . Then W^{\perp} is the z-axis.

$$x = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \implies x_W = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \qquad x_{W^{\perp}} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}.$$

$$x = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \implies x_W = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \qquad x_{W^{\perp}} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}.$$

This is just decomposing a vector into a "horizontal" component (in the xy-plane) and a "vertical" component (on the z-axis).

Orthogonal Decomposition Computation?

Problem: Given x and W, how do you compute the decomposition $x = x_W + x_{W^{\perp}}$?

Observation: It is enough to compute x_W , because $x_{W^{\perp}} = x - x_W$.

The $A^T A$ trick

Theorem (The A^TA Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{pmatrix}.$$

Then for any x in \mathbb{R}^n , the matrix equation

$$A^{T}Av = A^{T}x$$
 (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^T A v = A^T x$ (by row reducing).
- ▶ Then $x_W = Av$ and $x_{W^{\perp}} = x x_W$.

The A^TA Trick Example

Problem: Compute the orthogonal projection of a vector $x = (x_1, x_2, x_3)$ in \mathbb{R}^3 onto the xy-plane.

First we need a basis for the xy-plane: let's choose

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \text{and} \qquad A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Then

$$A^{T}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2} \qquad A^{T} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}.$$

Then $A^TAv = v$ and $A^Tx = \binom{x_1}{x_2}$, so the only solution of $A^TAv = A^Tx$ is $v = \binom{x_1}{x_2}$. Therefore,

$$x_W = Av = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}.$$

The A^TA Trick Another Example

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.$$

Compute the distance from x to W.

The distance from x to W is $\|x_{W^{\perp}}\|$, so we need to compute the orthogonal projection. First we need a basis for $W=\operatorname{Nul}\left(1-1\right)$. This matrix is in RREF, so the parametric form of the solution set is

$$x_1 = x_2 - x_3 \qquad \text{PVF} \\ x_2 = x_2 \qquad \qquad \text{www} \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Hence we can take a basis to be

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \text{\longrightarrow} \quad A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The A^TA Trick Another Example, Continued

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.$$

Compute the distance from x to W.

We compute

$$A^T A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad A^T x = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

To solve $A^T A v = A^T x$ we form an augmented matrix and row reduce:

$$\begin{pmatrix} 2 & -1 & | & 3 \\ -1 & 2 & | & 2 \end{pmatrix} \quad \overset{\mathsf{RREF}}{\leftrightsquigarrow} \quad \begin{pmatrix} 1 & 0 & 8/3 \\ 0 & 1 & 7/3 \end{pmatrix} \quad \leftrightsquigarrow \quad v = \frac{1}{3} \begin{pmatrix} 8 \\ 7 \end{pmatrix}.$$

$$x_W = Av = \frac{1}{3} \begin{pmatrix} 1 \\ 8 \\ 7 \end{pmatrix}$$
 $x_{W^{\perp}} = x - x_W = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}.$

The distance is $||x_{W^{\perp}}|| = \frac{1}{3}\sqrt{4+4+4} \approx 1.155$.

[interactive]

Theorem (The A^TA Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \dots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{pmatrix}.$$

Then for any x in \mathbb{R}^n , the matrix equation

$$A^{T}Av = A^{T}x$$
 (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Proof: Let $x = x_W + x_{W^{\perp}}$. Then $x_{W^{\perp}}$ is in $W^{\perp} = \text{Nul}(A^T)$, so $A^T x_{W^{\perp}} = 0$. Hence

$$A^{T}x = A^{T}(x_{W} + x_{W^{\perp}}) = A^{T}x_{W} + A^{T}x_{W^{\perp}} = A^{T}x_{W}.$$

Since x_W is in $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, we can write

$$x_W = c_1v_1 + c_2v_2 + \cdots + c_mv_m.$$

If
$$v = (c_1, c_2, \dots, c_m)$$
 then $Av = x_W$, so

$$A^T x = A^T x_W = A^T A v.$$

Orthogonal Projection onto a Line

Problem: Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n and let x be a vector in \mathbb{R}^n . Compute x_L .

We have to solve $u^T uv = u^T x$, where u is an $n \times 1$ matrix. But $u^T u = u \cdot u$ and $u^T x = u \cdot x$ are scalars, so

$$v = \frac{u \cdot x}{u \cdot u} \quad \Longrightarrow \quad x_L = uv = \frac{u \cdot x}{u \cdot u}u.$$

Projection onto a Line

The projection of x onto a line $L = \operatorname{Span}\{u\}$ is

$$x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L^{\perp}} = x - x_L.$$

Orthogonal Projection onto a Line Example

Problem: Compute the orthogonal projection of $x = \binom{-6}{4}$ onto the line L spanned by $u = \binom{3}{2}$, and find the distance from u to L.

$$x_L = \frac{x \cdot u}{u \cdot u} \, u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad x_{L^{\perp}} = x - x_L = \frac{1}{13} \begin{pmatrix} -48 \\ 72 \end{pmatrix}.$$

The distance from x to L is

$$||x_{L^{\perp}}|| = \frac{1}{13}\sqrt{48^2 + 72^2} \approx 6.656.$$

[interactive]

Summary

Let W be a subspace of \mathbb{R}^n .

- ▶ The **orthogonal complement** W^{\perp} is the set of all vectors orthogonal to everything in W.
- We have $(W^{\perp})^{\perp} = W$ and dim $W + \dim W^{\perp} = n$.
- ► Row $A = \operatorname{Col} A^T$, $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$, $\operatorname{Row} A = (\operatorname{Nul} A)^{\perp}$, $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$, $\operatorname{Col} A = (\operatorname{Nul} A^T)^{\perp}$.
- ▶ Orthogonal decomposition: any vector x in \mathbb{R}^n can be written in a unique way as $x = x_W + x_{W^{\perp}}$ for x_W in W and $x_{W^{\perp}}$ in W^{\perp} . The vector x_W is the orthogonal projection of x onto W.
- ▶ The vector x_W is the closest point to x in W: it is the best approximation.
- ▶ The *distance* from x to W is $||x_{W^{\perp}}||$.
- ▶ If W = Col A then to compute x_W , solve the equation $A^T A v = A^T x$; then $x_W = A v$.
- ▶ If $W = L = \text{Span}\{u\}$ is a line then $x_L = \frac{u \cdot x}{u \cdot u} u$.