MATH 1553 FINAL EXAM, SPRING 2018

Name	ame	e								
------	-----	---	--	--	--	--	--	--	--	--

Circle the name of your instructor below:

Fathi	Jankowski, lecture A	Jankowski, lecture C	Kordek
	Strenner, lecture H	Strenner, lecture M	Yan

DO NOT WRITE IN THE TABLE BELOW! It will be used to record scores.

1	2	3	4	5	6	7	8	9	10	Total

Please **read all instructions** carefully before beginning.

- The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- You may not use any calculators or aids of any kind (notes, text, etc.).
- Please show your work. A correct answer without appropriate work will receive little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

Problem 1.

True or false. Circle **T** if the statement is *always* true. Otherwise, circle **F**. You do not need to justify your answer, and there is no partial credit. In each case, assume that the entries of all matrices and all vectors are real numbers.

- If *A* is a 3 × 4 matrix and *b* is in \mathbb{R}^3 , then the set of solutions to Ax = bТ F a) is a subspace of \mathbf{R}^4 . If *A* is a 3×7 matrix then rank(*A*) < dim(Nul *A*). b) Т F c) Т F Let *A* be an $n \times n$ matrix. If *A* has two identical columns, then *A* is not invertible. d) Т F If *A* and *B* are 2×2 matrices that both have λ as an eigenvalue, then λ^2 is an eigenvalue of AB. Т F If A is an $n \times n$ matrix with n linearly independent eigenvectors, then e) each eigenvalue of A has algebraic multiplicity 1. f) Т F The least-squares solution to Ax = b is unique if $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$ If v and w are nonzero orthogonal vectors, then $\operatorname{proj}_{\operatorname{Span}\{v\}} w$ is the zero Т F g) vector.
- h) **T F** If *A* is a 4×3 matrix and Col *A* is 2-dimensional, then the orthogonal complement of Col *A* is also 2-dimensional.

Problem 2.

Short answer. On this page, you do not need to show your work. There is no partial credit for (a), (b), or (c).

a) Find $(AB)^{-1}$ if $A^{-1} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$ and $B^{-1} = \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix}$.

- **b)** Which of the following are subspaces of \mathbf{R}^3 ? Circle all that apply.
 - (i) The plane x y + z = 1 in \mathbb{R}^3 .
 - (ii) The *z*-axis in \mathbf{R}^3 .

(iii) The set of all vectors
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 in \mathbf{R}^3 that satisfy $x + 3y = z$.

c) Write a nonzero 2×2 matrix *A* which is upper-triangular and satisfies $A^2 = 0$.

d) Write three different 3×3 matrices *A*, *B*, and *C* which each have eigenvalue $\lambda = -1$ with algebraic multiplicity 3, so that no two of the different matrices are similar.

Problem 3.

[10 points]

Short answer. Show your computations for credit on (b) and (c).

a) Let *u* and *v* be orthogonal vectors in \mathbb{R}^3 with ||u|| = 5 and ||v|| = 1. Find $u \cdot (u - v)$.

b) Find a nonzero vector
$$v$$
 orthogonal to $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$.

c) Use row reduction to find the inverse of the matrix

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

d) In the following questions, b_1 and b_2 are vectors in \mathbb{R}^3 . Which statements are possible? Circle all that apply.

(i) b_1 and b_2 are nonzero and orthogonal, but the set $\{b_1, b_2\}$ is linearly dependent.

(ii) $\{b_1, b_2\}$ is a linearly independent set, but b_1 and b_2 are not orthogonal.

Problem 4.

[10 points]

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates counterclockwise by $\frac{\pi}{6}$ radians, and let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that reflects about the line y = x. **a)** Find the standard matrix *A* for *T* and the standard matrix *B* for *U*.

b) Find the matrix for T^{-1} and the matrix for U^{-1} . Clearly label your answers.

c) Compute the matrix *M* for the linear transformation from \mathbf{R}^2 to \mathbf{R}^2 that first rotates *clockwise* by $\frac{\pi}{6}$ radians, then reflects about the line y = x, then rotates counterclockwise by $\frac{\pi}{6}$ radians.

Problem 5.

[8 points]

Consider the following matrix *A*, and its reduced row echelon form.

$$A = \begin{pmatrix} 1 & 0 & 3 & 1 \\ -1 & 4 & -11 & 7 \\ -2 & 3 & -12 & 4 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

a) Find a basis for Col *A*.

b) Find a basis for Nul *A*.

c) What is dim $((NulA)^{\perp})$? Briefly justify your answer.

Problem 6.

[9 points]

Parts (a) and (b) are unrelated.

a) Compute the determinant of *A*, where
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 1 & 3 \\ 0 & -2 & 1 & 0 \end{pmatrix}$$
.

b) Let
$$W = \text{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ -8 \\ -2 \\ 0 \end{pmatrix} \right\}$$
. Find an orthogonal basis for W .

Problem 7.

[10 points]

Consider the matrix $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

a) Compute the characteristic polynomial of *A*.

- **b)** Write the eigenvalues of *A*.
- c) For each eigenvalue of *A*, compute a basis for the corresponding eigenspace.

d) Decide whether *A* is diagonalizable. If it is diagonalizable, find an invertible 3×3 matrix *P* and a diagonal matrix *D* such that $A = PDP^{-1}$. If *A* is not diagonalizable, explain why.

Problem 8.

[10 points]

Let $A = \begin{pmatrix} 2 & -6 \\ 2 & 2 \end{pmatrix}$. (a) Find the characteristic polynomial of *A*.

(b) Find the complex eigenvalues of *A*.

(c) For the eigenvalue with negative imaginary part, find a corresponding eigenvector.

(d) Find a matrix C that represents a composition of scaling and rotation and is similar to A.

(e) What is the scale factor for *C*?

Problem 9.

[9 points]

Let
$$W = \text{Span}\{v_1, v_2\}$$
, where $v_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$.
a) Find the closest point *w* in *W* to $x = \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.

b) Find the distance from *w* to
$$\begin{pmatrix} 0\\14\\-4 \end{pmatrix}$$
.

c) Find the standard matrix *A* for the orthogonal projection onto $\text{Span}\{v_1\}$.

Problem 10.

[8 points]

Find the best-fit line y = c + mx for the points (-5, -6), (-2, 9), and (1, 12).

Scratch paper. This sheet will not be graded under any circumstances.