
MATH 1553, EXAM 3 SOLUTIONS
FALL 2023

Name GT ID

Circle your instructor and lecture below. Some professors teach more than one lecture,
so be sure to circle the correct choice!
Jankowski (A, 8:25-9:15 AM) Kafer (B, 8:25-9:15 AM) Irvine (C, 9:30-10:20)

Kafer (D, 9:30-10:20 AM) He (G, 12:30-1:20 PM) Goldsztein (H, 12:30-1:20)

Goldsztein (I, 2:00-2:50 PM) Neto (L, 3:30-4:20 PM)

Yu (M, 3:30-4:20 PM) Ostrovskii, (N, 5:00-5:50 PM)
Please read all instructions carefully before beginning.

• Write your initials at the top of each page.

• The maximum score on this exam is 70 points, and you have 75 minutes to complete
this exam. Each problem is worth 10 points.

• There are no calculators or aids of any kind (notes, text, etc.) allowed.

• Unless stated otherwise, the entries in all matrices are real numbers.

• As always, RREF means “reduced row echelon form.”

• The “zero vector” in Rn is the vector in Rn whose entries are all zero.

• On free response problems, show your work, unless instructed otherwise. A correct
answer without appropriate work may receive little or no credit!

• We will hand out loose scrap paper, but it will not be graded under any circum-
stances. All answers and work must be written on the exam itself, with no exceptions.

• This exam is double-sided. You should have more than enough space to do every
problem on the exam, but if you need extra space, you may use the back side of the
very last page of the exam. If you do this, you must clearly indicate it.

• You may cite any theorem proved in class or in the sections we covered in the text.

Please read and sign the following statement.

I, the undersigned, hereby affirm that I will not share the contents of this exam with any-
one. Furthermore, I have not received inappropriate assistance in the midst of nor prior to
taking this exam. I will not discuss this exam with anyone in any form until after 7:45 PM
on Wednesday, November 15.
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Problem 1.

For each statement, answer TRUE or FALSE. If the statement is ever false, circle FALSE.
You do not need to show any work, and there is no partial credit. Each question is worth
2 points.

In each statement, A is a matrix whose entries are real numbers.
Solutions are on the next page.

a) Suppose A is a 3× 3 matrix and there is some b in R3 so that the equation Ax = b
has exactly one solution. Then A must be invertible.

TRUE FALSE

b) If A is an n× n matrix and det(A) = 0, then λ= 0 must be an eigenvalue of A.
TRUE FALSE

c) There is a 3× 3 real matrix A whose eigenvalues are −1, 3, and 2+ i.
TRUE FALSE

d) Suppose A is a 4× 4 matrix and its eigenvalues are

λ1 = −1, λ2 = 3, λ3 = 5, λ4 = 7.

Then A must be diagonalizable.
TRUE FALSE

e) If A is a 5× 5 matrix with characteristic polynomial

det(A−λI) = −λ(λ+ 2)(λ− 4)3,

then the null space of A must be a line.
TRUE FALSE



Solution.
a) True: If Ax = b has exactly one solution for some b, then Ax = 0 must have exactly

one solution, thus A is invertible by the Invertible Matrix Theorem (or by a direct
argument using pivots).

b) True: If det(A) = 0 then A is not invertible, which means Ax = 0x has infinitely
many solutions and therefore 0 is an eigenvalue of A. Alternatively, if det(A) = 0
then A is not invertible so A− 0I is not invertible, thus λ = 0 is an eigenvalue of A.
This problem was inspired by a true/false question in the 5.1 Webwork #7.

c) False. This was basically taken from #4 of the 5.5 Webwork. If 2+ i is an eigenvalue,
then 2−i would also be an eigenvalue, whereby A would have 4 different eigenvalues
(−1, 3, 2+ i, and 2− i) which is impossible for a 3× 3 matrix.

d) True. This is a quintessential diagonalization question. We know that eigenvectors
for different eigenvalues are linearly independent. Since A has 4 different eigen-
values, this means we get 4 linearly independent eigenvectors in R4, therefore A is
diagonalizable by the Diagonalization Theorem.

e) True. This is nearly identical to part of #3c in Sample Midterm 3A, but we give a
full explanation below anyway. The eigenvalue λ= 0 has algebraic multiplicity 1 in
the characteristic polynomial. Since for any eigenvalue we know

(alg. mult.)≥ (geo. mult.)≥ 1,

this gives us 1 ≥ geo. mult. ≥ 1 for λ = 0, thus λ = 0 has geometric multiplicity 1.
In other words, the null space (i.e. the 0-eigenspace) is a line.



Problem 2.
Solutions are on the next page.

a) (2 points) Let A=
�

4 −3
2 1

�

. Find A−1. Clearly circle your answer below.

(i)
1
10

�

1 3
−2 4

�

(ii)
1
10

�

1 −3
2 4

�

(iii) −
1
2

�

1 3
−2 4

�

(iv)
1
10

�

4 −3
2 1

�

(v)
1

10

�

4 3
−2 1

�

(vi) −
1
2

�

1 −3
2 4

�

b) (3 points) Suppose A is an invertible matrix whose inverse is given by

A−1 =

 −1 2 −2
−1 1 1
1 −1 0

!

.

(i) Suppose b is a vector in R3. How many solutions will the equation Ax = b have?
Circle your answer below.

None Exactly one Infinitely many solutions Not enough info to tell

(ii) Which one of the vectors below is a solution to Ax =

 

1
0
−3

!

? Circle your answer.

x =

 −1
0
0

!

x =

 

5
−4
1

!

x =

 

0
0
0

!

x =

 

3
2
1

!

x =

 

1
0
−1/3

!

c) (2 pts) Suppose det

 

a b c
d e f
g h i

!

= 1. Find det

 

4a− 2g 4b− 2h 4c − 2i
d e f
a b c

!

.

Clearly circle your answer below.

(i) 1 (ii) −1 (iii) 2 (iv) −2

(v) 4 (vi) −4 (vii) 8 (viii) −8.

d) (3 points) Suppose A and B are 2× 2 matrices satisfying

det(A) = 6, det(B) = −3.

Which of the following statements must be true? Clearly circle all that apply.
(i) AB is invertible and (AB)−1 = B−1A−1.

(ii) det(3B−1) = −1.

(iii) A− 6I is not invertible.



Solution.

a) This is #2b from Sample Midterm 3 with changed numbers. If A=
�

a b
c d

�

satisfies

ad − bc ̸= 0, then A is invertible and A−1 =
1

ad − bc

�

d −b
−c a

�

. Here,

A−1 =
1

4(1)− (2)(−3)

�

1 3
−2 4

�

=
1

10

�

1 3
−2 4

�

.

b) A is invertible so Ax = b is guaranteed to have exactly one solution. To solve Ax =
 

1
0
−3

!

we have

x = A−1

 

1
0
−3

!

=

 −1 2 −2
−1 1 1
1 −1 0

! 

1
0
−3

!

=

 

5
−4
1

!

.

c) This same type of problem has been on a worksheet, a Webwork, a quiz, and #2a
on Sample Midterm 3A, so here on the exam we are seeing it for the fifth time. We

get from

 

a b c
d e f
g h i

!

to

 

4a− 2g 4b− 2h 4c − 2i
d e f
a b c

!

, we first swap rows 1 and 3

to get
 

g h i
d e f
a b c

!

. The new determinant is 1(−1) = −1.

Next, we multiply the new first row by −2 to get
 −2g −2h −2i

d e f
a b c

!

. The new determinant is (−1)(−2) = 2.

Finally, we do a row-replacement that doesn’t change the determinant to get
 

4a− 2g 4b− 2h 4c − 2i
d e f
a b c

!

. Determinant is still 2.

d) (i) is true: det(A) ̸= 0 and det(B) ̸= 0, so both A and B are invertible and we know
the classic formula (AB)−1 = B−1A−1.
(ii) is false because det(3B−1) = 32 det(B−1) = 32(−1/3) = −3.

(iii) is false in general, for example A=
�

3 0
0 2

�

satisfies det(A) = 6, however

A− 6I =
�

−3 0
0 −4

�

which is certainly invertible.



Problem 3.
Solutions are on the next page.

a) Suppose A is an n× n matrix. Which one of the following statements is not correct?

(i) An eigenvalue of A is a scalar λ such that A−λI is not invertible.

(ii) An eigenvalue of A is a scalar λ such that (A−λI)v = 0 has a solution.

(iii) An eigenvalue of A is a scalar λ such that Av = λv for a nonzero vector v.

(iv) An eigenvalue of A is a scalar λ such that det(A−λI) = 0.

b) (2 points) Let T : R2 → R2 be the linear transformation that reflects vectors across

the line y = 7x , and let A be the standard matrix for T , so T
�

x
y

�

= A
�

x
y

�

.

In the blank below, write one eigenvector v in the (−1)-eigenspace of A.

v =
�

−7
1

�

or v =
�

1
−1/7

�

, etc.

c) (2 points) Let A=

 −1 −4 −6
0 1 0
0 0 1

!

.

Which one of the following describes the 1-eigenspace of A?

(i)

( 

0
0
0

!)

(ii) Span

( 

1
0
0

!)

(iii) Span

( −2
1
0

!)

(iv) Span

( −1
−4
−6

!)

(v) Span

( −2
1
0

!

,

 −3
0
1

!)

(vi) Span

( 

4
1
0

!

,

 

6
0
1

!)

(vii) All of R3

d) (4 points) Let A =
�

4 1
−2 3

��

1/2 0
0 1

��

4 1
−2 3

�−1

. Which of the following are

true? Clearly circle all that apply.

(i) The eigenvalues of A are 1/2 and 1.

(ii) For each vector x in R2, it is the case that An x approaches
�

4
−2

�

as n becomes

large.

(iii) Nul(A− I) = Span
§�

1
3

�ª

(iv) A10
�

4
−2

�

=
�

1
2

�10� 4
−2

�

.



Solution.
a) This was copied and pasted from #2 in the 5.1-5.2 Supplement. The answer is (ii),

because an eigenvalue is a scalar λ so that (A−λI)v = 0 has a non-trivial solution.
If λ is not an eigenvalue of A, then it still satisfies (A−λI)v = 0 for v = 0.

b) This problem is #2b from 5.1-5.2 Worksheet with a slightly modified line, and it was
also in at least one of the sample midterms. Reflection across the line y = 7x has
eigenvalues 1 and −1.

The 1-eigenspace is the line y = 7x itself. The (−1)-eigenspace is the line through
(0, 0) perpendicular to y = 7x , which is the line y = −(1/7)x . Therefore, the (−1)-

eigenspace is the span of
�

1
−1/7

�

or equivalently the span of
�

−7
1

�

or
�

7
−1

�

etc.

c)
�

A− I 0
�

=

 −2 −4 −6 0
0 0 0 0
0 0 0 0

!

RREF
−−→

 

1 2 3 0
0 0 0 0
0 0 0 0

!

, so x1+2x2+3x3 = 0 where

x2 and x3 are free.
 

x1
x2
x3

!

=

 −2x2 − 3x3
x2
x3

!

= x2

 −2
1
0

!

+ x3

 −3
0
1

!

.

d) A has been diagonalized for us, so its eigenvalues are λ1 = 1/2 and λ2 = 1, with

corresponding eigenvectors v1 =
�

4
−2

�

and v2 =
�

1
3

�

, respectively. We use these

facts below.
(i) True, the eigenvalues are 1/2 and 1.

(ii) False: in fact, this is not even true for x =
�

4
−2

�

.

An
�

4
−2

�

=
�

1
2

�n� 4
−2

�

which approaches
�

0
0

�

as n gets very large.

(iii) True: Nul(A− I) is by definition the 1-eigenspace of A, which we know is the

span of
�

1
3

�

.

(iv) True: since
�

4
−2

�

is a (1/2)-eigenvector, we have

A
�

4
−2

�

=
1
2

�

4
−2

�

, A2
�

4
−2

�

= A
�

1
2

�

4
−2

��

=
1
2
· A
�

4
−2

�

=
�

1
2

�2� 4
−2

�

, etc.,

A10
�

4
−2

�

=
�

1
2

�10� 4
−2

�

.



Problem 4.
Solutions are on the next page.

a) (2 points) Find all values of c so that λ= 2 is an eigenvalue of the matrix

A=
�

4 −3
4 c

�

. Clearly circle your answer below.

(i) c = −3 only (ii) c = −4 only (iii) c = 4 only (iv) c = −6 only

(v) All c except −4 (vi) All c except −6 (vii) All c except 6.

b) (4 points) The characteristic polynomial of some 7× 7 matrix A is

det(A−λI) = (5−λ)(1−λ)2(π−λ)4.

For this particular matrix A, some information is given below.

Eigenvalue 5 1 π

Algebraic multiplicity 1 2 4

Geometric multiplicity 1 2 3

(i) In the table above, write its missing entries.

(ii) Is A diagonalizable? Clearly circle your answer below.

YES NO NOT ENOUGH INFORMATION

c) (4 points) Suppose A is a 3× 3 matrix. Which of the following statements are true?
Clearly circle all that apply.

(i) If B is a 3 × 3 matrix that has the same reduced row echelon form as A, then
the eigenvalues of B are the same as the eigenvalues of A.

(ii) If λ = 3 is an eigenvalue of A, then the equation Ax = 3x must have infin-
itely many solutions.

(iii) If the equation (A− 2I)x = 0 has only the trivial solution, then 2 is not an
eigenvalue of A.

(iv) It is impossible for A to have 4 different eigenvalues.



Solution.
a) This is #7b of Sample Midterm 3A with the same eigenvalue and a slightly different

matrix.
�

A− 2I 0
�

=
�

2 −3 0
4 c − 2 0

�

which is non-invertible precisely when its determi-

nant is 0, so
2(c − 2) + 12= 0, 2c = −8, c = −4.

b) The eigenvalues and algebraic multiplicities come directly from the characteristic
polynomial. The geometric multiplicity of λ = 5 must be 1 because its algebraic
multiplicity is 1. The matrix A is NOT diagonalizable, because the geometric multi-
plicity of λ = π is only 3 while its algebraic multiplicity is 4, leaving us with only 6
linearly independent eigenvectors in R7.

c) (i) is false: for example A =
�

1 0
0 1

�

and B =
�

2 0
0 −1

�

have the same RREF but

different eigenvalues.
(ii) is true directly from the definition of eigenvalue.
(iii) is true, because then Ax = 2x has only the trivial solution.
(iv) is true: a 3 × 3 matrix has a degree 3 characteristic polynomial which has at
most 3 roots, therefore A has at most 3 different eigenvalues.



Problem 5.
This entire problem was copied from the sample midterm, with a slightly new A.

For this problem, A=

 −4 −8 12
0 −6 0
0 0 −6

!

.

a) (2 points) Write the eigenvalues of A. You do not need to show your work on this
part.
This page is a quintessential diagonalization problem. For part (a), A is upper-
triangular, so its eigenvalues are its diagonal entries: λ= −4 and λ= −6.

b) (5 points) For each eigenvalue of A, find a basis for the corresponding eigenspace.

(A+ 4I |0) =

 

0 −8 12 0
0 −2 0 0
0 0 −2 0

!

−→

 

0 −2 0 0
0 0 −2 0
0 −8 12 0

!

RREF
−−→

 

0 1 0 0
0 0 1 0
0 0 0 0

!

.

This gives x1 free, x2 = 0, and x3 = 0
 

x1
x2
x3

!

=

 

x1
0
0

!

= x1

 

1
0
0

!

Basis for (-4)-eigenspace :

( 

1
0
0

!)

.

(A+ 6I |0) =

 

2 −8 12 0
0 0 0 0
0 0 0 0

!

R1=R1/2−−−−→

 

1 −4 6 0
0 0 0 0
0 0 0 0

!

.

This gives x1 − 4x2 + 6x3 = 0 with x2 free and x3 free, so
 

x1
x2
x3

!

=

 

4x2 − 6x3
x2
0

!

= x2

 

4
1
0

!

+x3

 −6
0
1

!

Basis for (-6)-eigenspace :

( 

4
1
0

!

,

 −6
0
1

!)

.

c) (3 points) The matrix A is diagonalizable. Write a 3×3 matrix C and a 3×3 diagonal
matrix D so that A= C DC−1. Enter your answer below.

We form C using linearly independent eigenvectors and form D using the eigenval-
ues written in the corresponding order. Many answers are possible. For example,

C =

 

1 4 −6
0 1 0
0 0 1

!

, D =

 −4 0 0
0 −6 0
0 0 −6

!

or

C =

 

4 −6 1
1 0 0
0 1 0

!

, D =

 −6 0 0
0 −6 0
0 0 −4

!

.



Problem 6.
Free response. Show your work unless otherwise indicated! A correct answer without
sufficient work may receive little or no credit.

a) Let A=
�

5 −5
4 −3

�

.

(i) (4 points) Find the complex eigenvalues of A. Fully simplify your answer.
Solution:

0= det(A−λI) = λ2 − Tr(A)λ+ det(A) = λ2 − (5− 3)λ+ (−15+ 20)

= λ2 − 2λ+ 5,

so

λ=
−(−2)±

p

(−2)2 − 4(5)(1)
2

=
2±
p
−16

2
=

2± 4i
2
= 1± 2i .

(ii) (3 points) For the eigenvalue with positive imaginary part, find one corre-
sponding eigenvector v. Enter your answer in the space below.

Solution:
�

A− (1+ 2i)I 0
�

is
�

5− (1+ 2i) −5 0
4 −3− (1+ 2i) 0

�

=
�

4− 2i −5 0
4 −4− 2i 0

�

=
�

a b 0
(∗) (∗) 0

�

.

One eigenvector is v =
�

−b
a

�

=
�

5
4− 2i

�

by the 2 × 2 eigenvector trick. Other

answers possible, like v =
�

−5
−4+ 2i

�

or v =
�

4+ 2i
4

�

or even v =





2+i
2

1



, etc.

b) (3 points) Given that

det

 

0 −1 3
0 4 2
−2 −1 1

!

= 28, det

 

4 2 −1
0 4 2
−2 −1 1

!

= 8, and det

 

4 2 −1
0 −1 3
0 4 2

!

= −56,

compute the determinant of the 4× 4 matrix W below.

W =







4 1 2 −1
0 2 −1 3
0 0 4 2
−2 −1 −1 1







Solution: By cofactor expansion along the second column,

det(W ) = 1C12 + 2C22 + 0C32 − 1C42

= 1(−1)3(28) + 2(−1)4(8) + 0 − 1(−1)6(−56)

= −28+ 16+ 56= 44 .



Problem 7.

Free response. Show your work unless otherwise indicated! A correct answer without
sufficient work may receive little or no credit. Parts (a) and (b) are unrelated.

a) (5 points) Let A=

 

1 0 3
0 −1 2
1 0 4

!

. Find A−1. Write your answer in the space below.

A−1 =

 

4 0 −3
−2 −1 2
−1 0 1

!

Solution:
 

1 0 3 | 1 0 0
0 −1 2 | 0 1 0
1 0 4 | 0 0 1

!

R3=R3−R1−−−−−→

 

1 0 3 | 1 0 0
0 −1 2 | 0 1 0
0 0 1 | −1 0 1

!

R2=−R2−−−−→

 

1 0 3 | 1 0 0
0 1 −2 | 0 −1 0
0 0 1 | −1 0 1

!

R2=R2+2R3−−−−−−→
R1=R1−3R3

 

1 0 0 | 4 0 −3
0 1 0 | −2 −1 2
0 0 1 | −1 0 1

!

b) (5 points) Let A be the 2× 2 matrix whose 5-eigenspace is the solid line below and

whose 2-eigenspace is the dashed line below. Find A
�

4
1

�

.

x1

x2

5-eigenspace

2-eigenspace

Solution: The 2-eigenspace is spanned by
�

2
2

�

and the 5-eigenspace is spanned by
�

2
−1

�

. Also, note
�

4
1

�

=
�

2
2

�

+
�

2
−1

�

, therefore

A
�

4
1

�

= A
��

2
2

�

+
�

2
−1

��

= A
�

2
2

�

+ A
�

2
−1

�

= 2
�

2
2

�

+ 5
�

2
−1

�

=
�

4
4

�

+
�

10
−5

�

=
�

14
−1

�

.



Alternatively, we could have computed

A
�

4
1

�

=
�

2 2
2 −1

��

2 0
0 5

��

2 2
2 −1

�−1�4
1

�

= −
1
6

�

2 2
2 −1

��

2 0
0 5

��

−1 −2
−2 2

��

4
1

�

= −
1
6

�

2 2
2 −1

��

2 0
0 5

��

−6
−6

�

= −
1
6

�

2 2
2 −1

��

−12
−30

�

= −
1
6

�

−84
6

�

=
�

14
−1

�

.



This page is reserved ONLY for work that did not fit elsewhere on the exam.

If you use this page, please clearly indicate (on the problem’s page and here) which
problems you are doing.


