MATH 1553, C. JANKOWSKI MIDTERM 2

Please **read all instructions** carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Scoring Page

Please do not write on this page.

1	2	3	4	5	Total

- **a)** Complete the following definition (be mathematically precise!): A set of vectors $\{v_1, v_2, \dots, v_p\}$ in \mathbb{R}^n is *linearly independent* if...
- **b)** Let $A = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$. If A is invertible, find A^{-1} . If A is not invertible, justify why.

The remaining problems are true or false. Answer true if the statement is *always* true. Otherwise, answer false. You do not need to justify your answer.

- c) **T F** If *A* is an $n \times n$ matrix and the columns of *A* span \mathbb{R}^n , then Ax = 0 has only the trivial solution.
- d) **T F** If A is a 6×7 matrix and the null space of A has dimension 4, then the column space of A is a 2-plane.
- e) **T F** If *A* is an $n \times n$ matrix and Ax = b has exactly one solution for some *b* in \mathbb{R}^n , then *A* is invertible.
- f) **T F** If *A* is an $m \times n$ matrix and m > n, then the linear transformation T(x) = Ax cannot be one-to-one.

Solution.

a) the equation $x_1v_1 + \cdots + x_pv_p = 0$ has only the trivial solution $x_1 = \cdots = x_p = 0$.

b) det(A) = 2 - (-2) = 4, so A is invertible;
$$A^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
.

- **c)** True. *A* is invertible by the Invertible Matrix Theorem, so Ax = 0 has only the trivial solution.
- **d)** False. By the Rank Theorem, $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = 7$, so $\dim(\operatorname{Col} A) = 3$.
- e) True. If Ax = b has exactly one solution for some b, then Ax = 0 has exactly one solution (since the sol. set for Ax = b is a translate of the sol. set for Ax = 0), hence A is invertible.
- **f)** False. $T : \mathbf{R}^n \to \mathbf{R}^m$ can be one to one. For example, T(a) = (a, 0).

[10 points]

Parts (a), (b), and (c) are unrelated.

a) Let
$$V = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}.$$

Fill in the blank: the dimension of *V* is _____.

b) Let
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x - y - z = 0 \right\}.$$

Is W a subspace of \mathbb{R}^3 ? (no justification required)

c) The famous philologist is obsessed with the set of vectors

$$\left\{ \begin{pmatrix} -1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\h\\-7 \end{pmatrix} \right\}$$

where h is some real number.

Find all values of *h* that make the set linearly dependent.

Solution.

a) A basis for
$$V$$
 is $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$, so dim $V=2$.

b) W is a subspace of \mathbb{R}^3 . In fact, it is Nul A for the matrix $A = \begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$.

c)

$$\begin{pmatrix} -1 & 1 & 1 \\ 3 & 1 & h \\ -1 & -1 & -7 \end{pmatrix} \xrightarrow[R_3 = R_3 - R_1]{R_2 = R_2 + 3R_1} \begin{pmatrix} -1 & 1 & 1 \\ 0 & 4 & h + 3 \\ 0 & -2 & -8 \end{pmatrix} \xrightarrow[R_2 \leftrightarrow R_3]{R_2 \leftrightarrow R_3} \begin{pmatrix} -1 & 1 & 1 \\ 0 & -2 & -8 \\ 0 & 4 & h + 3 \end{pmatrix} \xrightarrow[R_3 = R_3 + 2R_2]{R_3 = R_3 + 2R_2} \begin{pmatrix} -1 & 1 & 1 \\ 0 & -2 & -8 \\ 0 & 0 & h - 13 \end{pmatrix}.$$

The vectors are linearly dependent if and only if the matrix has fewer than 3 pivots. The matrix will have three pivots unless h-13=0, which is when h=13.

Problem 3. [11 points]

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 - x_2 \\ 2x_1 \end{pmatrix},$$

and let $U: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection about the line y = x.

- a) Write the standard matrix A for T and the standard matrix B for U.
- **b)** Is *U* one-to-one? Briefly justify your answer.
- **c)** Find the standard matrix for $U \circ T$.
- **d)** Is the transformation $U \circ T$ onto? Briefly justify your answer.

Solution.

a)
$$A = (T(e_1) \ T(e_2) \ T(e_3)) = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$
, and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- **b)** U is one-to-one, since B has a pivot in every column. Alternatively, if U(x, y) is the zero vector then (y, x) = (0, 0) so x = y = 0, which shows U is one-to-one.
- **c)** The matrix for $U \circ T$ is

$$BA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

d) $U \circ T$ is onto, since *BA* has a pivot in every row.

Problem 4.

[10 points]

Consider the following matrix *A* and its reduced row echelon form:

$$\begin{pmatrix} 1 & -2 & 4 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \\ -2 & 4 & -8 \end{pmatrix} \xrightarrow{\text{consol}} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Find a basis for Nul A.
- **b)** Find a basis \mathcal{B} for Col A.

c) Let
$$x = \begin{pmatrix} -2 \\ -1 \\ -1 \\ 4 \end{pmatrix}$$
. Is x in Col A ?

If your answer is no, justify why x is not in Col A. If your answer is yes, find $[x]_{\mathcal{B}}$.

Solution.

a) From the RREF of $(A \mid 0)$ we see that Ax = 0 when $x_1 = 2x_2$, $x_2 = x_2$, and $x_3 = 0$. In parametric vector form,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \text{ so a basis for Nul } A \text{ is } \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

b) The RREF of *A* shows that the first and third columns are pivot columns.

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 3 \\ -8 \end{pmatrix} \right\}.$$

c) We attempt to solve $x = c_1b_1 + c_2b_2$ for some scalars c_1 and c_2 .

$$\begin{pmatrix} 1 & 4 & -2 \\ 0 & 1 & -1 \\ 1 & 3 & -1 \\ -2 & -8 & 4 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{pmatrix} 1 & 4 & -2 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 = R_3 + R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So $c_1 = 2$ and $c_2 = -1$, and $x = 2b_1 - b_2$.

$$[x]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Problem 5. [7 points]

Parts (a) and (b) are unrelated.

a) Suppose that a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $T \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $T \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Find $T \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

- **b)** Write a single matrix *A* that satisfies both of the following two properties:
 - Col A is a subspace of \mathbb{R}^4 , and
 - Nul A is the line y = 10x in \mathbb{R}^2 .

Solution.

a)
$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
, so by linearity of T ,
$$T \begin{pmatrix} 4 \\ -1 \end{pmatrix} = T \begin{pmatrix} 1 \\ -2 \end{pmatrix} + T \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

b) Our *A* must be 4×2 , so that Col *A* is a subspace \mathbf{R}^4 and Nul *A* is a subspace of \mathbf{R}^2 . The line y = 10x is spanned by $\begin{pmatrix} 1 \\ 10 \end{pmatrix}$. Therefore, if $\begin{pmatrix} a & b \end{pmatrix}$ is a row of *A*, then

$$0 = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 \\ 10 \end{pmatrix} = a + 10b.$$

Thus, a = -10b and b = b, so a row of A is $\begin{pmatrix} -10 & 1 \end{pmatrix}$ or any scalar multiple of it. We need exactly one free variable since Nul A is a line.

$$A = \begin{pmatrix} -10 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 is one example.

[Scratch work]