MATH 1553, JANKOWSKI MIDTERM 1, FALL 2019

Name		Section	
------	--	---------	--

Please **read all instructions** carefully before beginning.

- Write your name on the front of each page (not just the cover page!).
- The maximum score on this exam is 50 points, and you have 50 minutes to complete this exam.
- There are no calculators or aids of any kind (notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Show your work, unless instructed otherwise. A correct answer without appropriate work will receive little or no credit! If you cannot fit your work on the front side of the page, use the back side of the page and indicate that you are using the back side.
- We will hand out loose scrap paper, but it **will not be graded** under any circumstances. All work must be written on the exam itself.
- You may cite any theorem proved in class or in the sections we covered the text.
- Good luck!

This page was intentionally left blank.

These problems are true or false. Circle **T** if the statement is *always* true. Otherwise, circle **F**. You do not need to justify your answer.

a) \mathbf{T} \mathbf{F} The augmented matrix below is in RREF.

$$\begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- b) **T F** If the RREF of an augmented matrix has a row of zeros, then the corresponding linear system of equations either has no solutions or infinitely many solutions.
- c) **T F** Suppose v_1 , v_2 , v_3 , b are vectors in \mathbf{R}^3 . If the vector equation $x_1v_1 + x_2v_2 + x_3v_3 = b$ is inconsistent, then the vector equation $x_1v_1 + x_2v_2 = b$ must also be inconsistent.
- d) **T F** If *A* is a 2 × 3 matrix and the solution set to Ax = 0 is a plane in \mathbb{R}^3 , then the equation Ax = b must be inconsistent for some *b* in \mathbb{R}^2 .
- e) **T F** If *A* is a 2 × 2 matrix and the equation $Ax = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ is consistent, then the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ must be in the span of the columns of *A*.

Extra space for scratch work on problem 1

You don't need to show work on (b). Parts (a)-(c) are 2 points each, and part (d) is 5 points.

- a) Complete the following definition (be mathematically precise!): Let v_1, v_2, \ldots, v_p be vectors in \mathbf{R}^n . We say $\{v_1, v_2, \ldots, v_p\}$ is linearly independent if...
- **b)** Suppose a homogeneous system of 4 linear equations in 3 unknowns corresponds to an augmented matrix with exactly two pivots. Then the solution set for the system is a:

(circle one answer) point line plane in:
$$(\text{circle one answer}) \quad R \quad R^2 \quad R^3 \quad R^4.$$

c) Is there a 2×2 matrix A so that the solution set for the equation Ax = 0 is the line $x_1 = x_2 + 1$? If yes, write such an A. If no, justify why there is no such A.

d) Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ -2 \\ c \end{pmatrix}$.

Find all values of c (if there are any) so that v_3 is a linear combination of v_1 and v_2 .

Problem 3.

Parts (a) and (b) are unrelated. Part (a) is worth 5 points. Part (b) is worth 7 points.

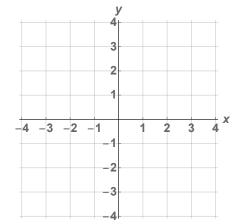
a) Councilman Jamm loves the linear system of equations

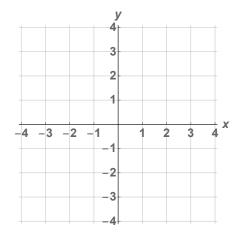
$$2x - hy = k$$

$$4x + 10y = 5,$$

where h and k are real numbers. Find all values of h and k (if there are any) so that the system has infinitely many solutions.

b) Let $A = \begin{pmatrix} 1 & 2 \\ -3 & -6 \end{pmatrix}$. On the left graph, draw the span of the columns of A. On the right graph, draw the solution set for the equation $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.





Consider the following linear system of equations in the variables x_1 , x_2 , x_3 , x_4 :

$$x_1 - 2x_2 + x_4 = 1$$

$$x_1 - 2x_2 + x_3 + x_4 = -2$$

$$3x_1 - 6x_2 + 2x_3 + 3x_4 = -3.$$

a) Write the augmented matrix corresponding to this system, and put the augmented matrix into RREF.

b) The system is consistent. Write the set of solutions to the system of equations in parametric vector form.

c) Write *one* vector that is not the zero vector and that is a solution for the corresponding homogeneous system of equations below. You do not need to show your work for this part.

$$x_1 - 2x_2 + x_4 = 0$$

$$x_1 - 2x_2 + x_3 + x_4 = 0$$

$$3x_1 - 6x_2 + 2x_3 + 3x_4 = 0.$$

Parts (a) and (b) are unrelated.

- **a)** Write a single matrix *A* that satisfies all of the following conditions:
 - The equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ is consistent, and the solution set is a line.
 - The equation $Ax = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is inconsistent.

- **b)** Suppose v_1, v_2, v_3, v_4 are vectors in \mathbf{R}^4 . Which of the following statements must be true? Circle all that apply.
 - (i) If $\{v_1, v_2, v_3, v_4\}$ is linearly dependent, then v_4 is in Span $\{v_1, v_2, v_3\}$.
 - (ii) If $\{v_1,v_2,v_3\}$ is linearly independent, then $\{v_1,v_2\}$ is linearly independent.
 - (iii) If $\{v_1, v_2, v_3, v_4\}$ is linearly independent, then $\text{Span}\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$.