Math 1553 Worksheet §4.4 and 4.5, Matrix Multiplication and Inverses

- **1.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^2 and codomain \mathbb{R}^3 .

b) If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .

c) Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.

d) Suppose $T : \mathbf{R}^n \to \mathbf{R}^m$ and $U : \mathbf{R}^m \to \mathbf{R}^p$ are linear transformations and $U \circ T$ is onto. Then *U* and *T* must both be onto.

b) Find the standard matrix for the composition $T \circ U$.

c) Find the standard matrix for U^{-1} .