Math 1553 Worksheet §3.6, 3.7, 3.9, 4.1 Solutions

- **1.** Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.
 - a) If *A* is a 3×100 matrix of rank 2, then dim(Nul*A*) = 97.

TRUE FALSE

b) If A is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of A form a basis for \mathbf{R}^m .

c) The set
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 in $\mathbb{R}^4 \mid x - 4z = 0 \right\}$ is a subspace of \mathbb{R}^4 .
TRUE FALSE

Solution.

- a) False. By the Rank Theorem, rank(A) + dim(NulA) = 100, so dim(NulA) = 98.
- **b)** False. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the trivial solution for Ax = 0, but

its column space is a 2-dimensional subspace of \mathbf{R}^3 .

c) True. V is Nul(A) for the 1×4 matrix A below, and therefore is automatically a subspace of \mathbf{R}^4 :

$$A = (1 \ 0 \ -4 \ 0).$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!

(1) The zero vector is in *V*, since 0 - 4(0)0 = 0.

(2) Let
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ be in V, so $x_1 - 4z_1 = 0$ and $x_2 - 4z_2 = 0$.
We compute

we compute

$$u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}$$

Is $(x_1 + x_2) - 4(z_1 + z_2) = 0$? Yes, since

$$(x_1 + x_2) - 4(z_1 + z_2) = (x_1 - 4z_1) + (x_2 - 4z_2) = 0 + 0 = 0.$$

(3) If
$$u = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 is in V then so is cu for any scalar c :
 $cu = \begin{pmatrix} cx \\ cy \\ cz \\ cw \end{pmatrix}$ and $cx - 4cz = c(x - 4z) = c(0) = 0.$

2. Write a matrix *A* so that
$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \right\}$$
 and $\operatorname{Nul} A$ is the *xz*-plane.

Solution.

Many examples are possible. We'd like to design an *A* with the prescribed column span, so that $(A \mid 0)$ will have free variables x_1 and x_3 . One way to do this is simply to leave the x_1 and x_3 columns blank, and make the second column $\begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$. This guarantees that *A* destroys the *xz*-plane and has the column span required.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

An alternative method for finding the same matrix: Write $A = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$. We want the column span to be the span of $\begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$ and we want

$$A\begin{pmatrix} x\\0\\z \end{pmatrix} = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x\\0\\z \end{pmatrix} = xv_1 + zv_3 = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \text{ for all } x \text{ and } z.$$

One way to do this is choose $v_1 = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$, and $v_2 = \begin{pmatrix} 1\\-3\\1 \end{pmatrix}$.

- **3.** Let $A = \begin{pmatrix} 1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2 \end{pmatrix}$, and let *T* be the matrix transformation associated to *A*, so T(x) = Ax.
 - a) What is the domain of *T*? What is the codomain of *T*? Give an example of a vector in the range of *T*.
 - **b)** The RREF of *A* is $\begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Is there a vector in the codomain of *T* which

is not in the range of *T*? Justify your answer.

Solution.

a) The domain is \mathbf{R}^4 ; the codomain is \mathbf{R}^3 . The vector $\mathbf{0} = T(\mathbf{0})$ is contained in the range, as is

$$\begin{pmatrix} 1\\2\\1 \end{pmatrix} = T \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}.$$

b) Yes. The range of *T* is the column span of *A*, and from the RREF of *A* we know *A* only has two pivots, so its column span is a 2-dimensional subspace of \mathbf{R}^3 . Since dim $(\mathbf{R}^3) = 3$, the range is not equal to \mathbf{R}^3 .