MATH 1553, SPRING 2019 SAMPLE MIDTERM 1: THROUGH SECTION 3.5

Name

Please **read all instructions** carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

a) Compute:
$$\begin{pmatrix} 3 & 2 \\ -2 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} =$$

The remaining problems are True or false. Circle **T** if the statement is **always** true, and circle **F** otherwise. You do not need to justify your answer.

- b) **T F** The matrix $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ is in reduced row echelon form.
- c) **T F** If the augmented matrix corresponding to a linear system of equations has a pivot in every row, then the system is consistent.
- d) **T F** If *A* is an $m \times n$ matrix and Ax = 0 has a unique solution, then Ax = b is consistent for every *b* in **R**^{*m*}.
- e) **T F** The equation $x_1 \sqrt{5}x_2 = 10 \pi^2 x_3$ is a linear equation in x_1, x_2, x_3 .

Solution.

a)
$$1 \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -6 \\ 0 \\ -12 \end{pmatrix} = \begin{pmatrix} -3 \\ -2 \\ -11 \end{pmatrix}.$$

b) True.

- c) False. For example, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ has a pivot in every row but is inconsistent.
- **d)** False. For example, if $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$, then Ax = 0 has only the trivial solution, but

$$Ax = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 has no solution.

e) True: $\sqrt{5}$ and π^2 are coefficients, not variables.

Problem 2.

Solution.

- a) Line in \mathbb{R}^3 . Since there are 2 pivots but 3 columns, one column will not have a pivot, so Ax = 0 will have exactly one free variable. The number of entries in x must match the number of columns of A (namely, 3), so each solution x is in \mathbb{R}^3 .
- **b)** The system $\begin{pmatrix} 1 & 1 & | & 0 \\ 1 & 1 & | & 1 \end{pmatrix}$ is inconsistent; its corresponding vector equation is

$$x_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- c) The solution set of Ax = 0 is the parallel line through the origin.
- d) No. Recall that Span $\{b, v, w\}$ is the set of all linear combinations of b, v, and w. If b is in Span $\{v, w\}$ then b is a linear combination of v and w. Consequently, any element of Span{b, v, w} is a linear combination of v and w and is therefore in Span{v, w},

which is at most a plane and cannot be all of \mathbf{R}^3 .

To see why the span of v and w can never be \mathbf{R}^3 , consider the matrix A whose columns are v and w. Since A is 3×2 , it has at most two pivots, so A cannot have a pivot in every row. Therefore, by a theorem from section 1.4, the equation Ax = b will fail to be consistent for some b in \mathbf{R}^3 , which means that some b in \mathbf{R}^3 is not in the span of v and w.

a) Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in *x* and *y* given by

$$\begin{array}{l} x - y = h \\ 3x + hy = -9 \end{array}$$

where h is a real number. Find all values of h (if any) which make the system have infinitely many solutions. If there is no such h, justify why.

b) Find all values of *k* (if any) so that the vectors below are not linearly independent.

(1)	\	(2)		(4)	
0	,	6	,	k	
(3))	(3)		(1)	

Solution.

a) Represent the system with an augmented matrix and row-reduce:

$$\begin{pmatrix} 1 & -1 & h \\ 3 & h & -9 \end{pmatrix} \xrightarrow{R_2 - 3R_1} \begin{pmatrix} 1 & -1 & h \\ 0 & h + 3 & -9 - 3h \end{pmatrix}.$$

The system has two pivots on the left side of the augment (yielding a unique solution) unless h = -3, in which case the matrix is

$$\left(\begin{array}{rrrr|r}
1 & -1 & -3 \\
0 & 0 & 0
\end{array}\right),$$

so the system has infinitely many solutions.

b)

$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 6 & k \\ 3 & 3 & 1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \\ 0 & 6 & k \end{pmatrix} \xrightarrow{R_2 = R_2 - 3R_1} \begin{pmatrix} 1 & 2 & 4 \\ 0 & -3 & -11 \\ 0 & 6 & k \end{pmatrix} \xrightarrow{R_3 = R_3 + 2R_2} \begin{pmatrix} 1 & 2 & 4 \\ 0 & -3 & -11 \\ 0 & 0 & k - 22 \end{pmatrix}.$$

The matrix has a pivot in every column unless k = 22, in which case the matrix only has two pivots and therefore the vectors will be linearly dependent.

a) Find the parametric form of the general solution of the following system of equations. Clearly indicate which variables (if any) are free variables.

b) Write the set of solutions to

 $\begin{aligned} x_1 + 2x_2 + 2x_3 - x_4 &= 0\\ 2x_1 + 4x_2 + x_3 - 2x_4 &= 0\\ -x_1 - 2x_2 - x_3 + x_4 &= 0 \end{aligned}$

in parametric vector form.

Solution.

a) We put the appropriate augmented matrix into RREF.

$$\begin{pmatrix} 1 & 2 & 2 & -1 & | & 4 \\ 2 & 4 & 1 & -2 & | & -1 \\ -1 & -2 & -1 & 1 & | & -1 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 2 & -1 & | & 4 \\ 0 & 0 & -3 & 0 & | & -9 \\ 0 & 0 & 1 & 0 & | & 3 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 2 & 2 & -1 & | & 4 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & -3 & 0 & | & -9 \end{pmatrix}$$
$$\xrightarrow{R_3 = R_3 + 3R_2}_{R_1 = R_1 - 2R_2} \begin{pmatrix} 1 & 2 & 0 & -1 & | & -2 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Therefore, x_2 and x_4 are free, and we have:

$x_1 = \cdot$	$-2 - 2x_2 + x_4$
$x_2 =$	x_2
$x_3 =$	3
$x_4 =$	x_4 .

In parametric form, this is:

-

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 - 2x_2 + x_4 \\ x_2 \\ 3 \\ & x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 3 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

b) The equation in (b) is just the corresponding homogeneous equation, which is a translate of the above plane which includes the origin.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \qquad (x_2, x_4 \text{ real}) .$$

Problem 5.

Write an augmented matrix corresponding to a system of two linear equations in three variables x_1 , x_2 , x_3 , whose solution set is the span of $\begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$. Briefly justify your answer.

Solution.

This problem is familiar territory, except that here, we are asked to come up with a system with the prescribed span, rather than being handed a system and discovering the span.

Since the span of any vector includes the origin, the zero vector is a solution, so the system is homogeneous.

Note that the span of
$$\begin{pmatrix} -4\\1\\0 \end{pmatrix}$$
 is all vectors of the form $t \begin{pmatrix} -4\\1\\0 \end{pmatrix}$ where *t* is real.
It consists of all $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ so that $x_1 = -4x_2$, $x_2 = x_2$, $x_3 = 0$.

The equation $x_1 = -4x_2$ gives $x_1 + 4x_2 = 0$, so one line in the matrix can be $\begin{pmatrix} 1 & 4 & 0 & | & 0 \end{pmatrix}$. The equation $x_3 = 0$ translates to $\begin{pmatrix} 0 & 0 & 1 & | & 0 \end{pmatrix}$. Note that this leaves x_2 free, as desired.

This gives us the augmented matrix

$$\left[
\left(
\begin{array}{rrrr|r}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\right)$$

(Multiple examples are possible)

Let's check: the system has one free variable x_2 . The first line says $x_1 + 4x_2 = 0$, so $x_1 = -4x_2$. The second line says $x_3 = 0$. Therefore, the general solution is $x = \begin{pmatrix} -4x_2 \\ x_2 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$ where x_2 is real. In other words, the solution set is the span of $\begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$.

The system of equations is

$$\begin{aligned} x_1 + 4x_2 &= 0\\ x_3 &= 0. \end{aligned}$$

[Scratch work]