Math 1553 Supplement §6.2, 6.4

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

- **1.** If *A* is an invertible matrix and *A* is diagonalizable, is A^{-1} necessarily diagonalizable? Justify your answer.
- 2. Give examples of 2×2 matrices with the following properties. Justify your answers.a) A matrix *A* which is invertible and diagonalizable.
 - **b)** A matrix *B* which is invertible but not diagonalizable.
 - c) A matrix *C* which is not invertible but is diagonalizable.
 - d) A matrix *D* which is neither invertible nor diagonalizable.
- **3.** $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}.$
 - a) Find the eigenvalues of *A*, and find a basis for each eigenspace.
 - **b)** Is *A* diagonalizable? If your answer is yes, find a diagonal matrix *D* and an invertible matrix *C* so that $A = CDC^{-1}$. If your answer is no, justify why *A* is not diagonalizable.

4. Let
$$A = \begin{pmatrix} 8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33 \end{pmatrix}$$
.

The characteristic polynomial for A is $-\lambda^3 + 7\lambda^2 - 16\lambda + 12$, and $\lambda - 3$ is a factor. Decide if A is diagonalizable. If it is, find an invertible matrix C and a diagonal matrix D such that $A = CDC^{-1}$.

- 5. Suppose a 2 × 2 matrix *A* has eigenvalue $\lambda_1 = -2$ with eigenvector $v_1 = \begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$, and eigenvalue $\lambda_2 = -1$ with eigenvector $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
 - **a)** Find *A*.
 - **b)** Find *A*¹⁰⁰.