Math 1553 Supplement §3.6, 3.7, 3.9, 4.1

Solutions

1. Suppose *V* is a 3-dimensional subspace of \mathbb{R}^5 containing $\begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Must
$$\left\{ \begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 be a basis for V ? Justify your answer.

Solution.

Yes. The Basis Theorem says that since we know $\dim(V) = 3$, our three vectors will form a basis for V if and only if they are linearly independent.

Call the vectors v_1, v_2, v_3 . It is very little work to show that the matrix $A = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ has a pivot in every column, so the vectors are linearly independent.

2. Find bases for the column space and the null space of

$$A = \left(\begin{array}{ccccc} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{array}\right).$$

Solution.

The RREF of $(A \mid 0)$ is

$$\begin{pmatrix}
1 & 0 & 5 & -6 & 1 & 0 \\
0 & 1 & -3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},$$

so x_3, x_4, x_5 are free, and

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5x_3 + 6x_4 - x_5 \\ 3x_3 - x_4 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore, a basis for Nul A is $\left\{ \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$

To find a basis for Col A, we use the pivot columns as they were written in the

2 Solutions

original matrix *A*, not its RREF. These are the first two columns:

$$\left\{ \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-2 \end{pmatrix} \right\}.$$

3. Find a basis for the subspace V of \mathbb{R}^4 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + 2y - 3z + w = 0 \right\}.$$

Solution.

V is Nul *A* for the 1×4 matrix $A = \begin{pmatrix} 1 & 2 & -3 & 1 \end{pmatrix}$. The augmented matrix $\begin{pmatrix} A & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 & 1 & 0 \end{pmatrix}$ gives x = -2y + 3z - w where y, z, w are free variables. The parametric vector form for the solution set to Ax = 0 is

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -2y + 3z - w \\ y \\ z \\ w \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore, a basis for V is

$$\left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\}.$$

- **4.** a) True or false: If A is an $m \times n$ matrix and Nul(A) = \mathbb{R}^n , then Col(A) = $\{0\}$.
 - **b)** Give an example of 2×2 matrix whose column space is the same as its null space.
 - **c)** True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for Ax = 0 has dimension 5.

Solution.

a) If $Nul(A) = \mathbb{R}^n$ then Ax = 0 for all x in \mathbb{R}^n , so the only element in Col(A) is $\{0\}$. Alternatively, the rank theorem says

 $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = n \implies \dim(\operatorname{Col} A) + n = n \implies \dim(\operatorname{Col} A) = 0 \implies \operatorname{Col} A = \{0\}.$

- **b)** Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Its null space and column space are Span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.
- **c)** False. The rank theorem says that the dimensions of the column space (ColA) and homogeneous solution space (NulA) add to 10, no matter what m is.

5. For each matrix *A*, describe what the transformation T(x) = Ax does to \mathbb{R}^3 geometrically.

a)
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Solution.

a) We compute

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}.$$

This is the reflection over the yz-plane.

b) We compute

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}.$$

This is projection onto the z-axis.